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Abstract Equity default swaps (EDS) are hybrid credit-equity products that provide
a bridge from credit default swaps (CDS) to equity derivatives with barriers. This
paper develops an analytical solution to the EDS pricing problem under the jump-to-
default extended constant elasticity of variance model (JDCEV) of Carr and Linetsky.
Mathematically, we obtain an analytical solution to the first passage time problem for
the JDCEV diffusion process with killing. In particular, we obtain analytical results
for the present values of the protection payoff at the triggering event, periodic pre-
mium payments up to the triggering event, and the interest accrued from the previous
periodic premium payment up to the triggering event, and we determine arbitrage-
free equity default swap rates and compare them with CDS rates. Generally, the EDS
rate is strictly greater than the corresponding CDS rate. However, when the trigger-
ing barrier is set to be a low percentage of the initial stock price and the volatility
of the underlying firm’s stock price is moderate, the EDS and CDS rates are quite
close. Given the current movement to list CDS contracts on organized derivatives ex-
changes to alleviate the problems with the counterparty risk and the opacity of over-
the-counter CDS trading, we argue that EDS contracts with low triggering barriers
may prove to be an interesting alternative to CDS contracts, offering some advan-
tages due to the unambiguity, and transparency of the triggering event based on the
observable stock price.
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1 Introduction

Equity default swaps (EDS) are a class of hybrid credit-equity products that pro-
vide a bridge from credit default swaps (CDS) to equity derivatives with barriers.
JP Morgan’s Odysseus deal (2003) was the first major transaction in which EDS
were included as synthetic collateral for collateralized debt obligations (CDO). The
Odysseus CDO consisted of 90% CDS and 10% EDS on a notional amount of 1.2 bil-
lion Euro (see Weidner et al. [24]). Moody’s assigned it a credit rating in December
2003. In 2004, Daiwa Securities originated the first rated CDO of pure EDS with the
notional of 45 billion yen. While the on-going crisis in the credit markets worldwide
puts into question the viability of some of the over-the-counter credit derivatives,
given the significant counterparty risks involved, an alternative point of view has
emerged that credit derivatives, such as CDS, should be traded on organized deriva-
tives exchanges to gain transparency and the benefits of the clearing house guaran-
teeing transactions to remove counterparty risk. Indeed, in some recent cases CDS
protection writers ended up with weaker credit ratings than some of the names they
have written protection on, in part due to the heavy losses they have sustained on
settling CDS contracts they have written on other names. As we write this, the nego-
tiations are on-going with regard to creating the CDS exchange (see Gutierrez [15]).
Notably, EDS provide a bridge from CDS to equity derivatives products, with the
transparency of the latter based on the observable stock price. In this sense, standard-
ized and transparent EDS contracts might be a more natural product for derivatives
exchanges than CDS contracts.

Since the Odysseus deal, there has been an on-going debate in the marketplace
whether EDS is truly a credit-like product, or just another exotic equity derivative.
For instance, Société Générale’s yield enhancement strategies (YES) are EDS-like
products that have been marketed for a long time (see Wolcott [25]). Some see EDS
contracts as a variation of deep-out-of-the-money American digital options for which
the premium is paid in installments over time up to the trigger event, thus viewing
EDS as a type of exotic equity option. Other authors state that EDS close the gap
between equity and credit since they are structurally very similar to CDS. An EDS
contract delivers a protection payment if the reference entity’s stock price drops be-
low a pre-specified lower barrier level, typically set at 30% of the stock price at the
contract inception. The triggering event is thus a severe stock price drop of 70% or
more from the initial level. In exchange, the EDS buyer makes periodic premium
payments that accrue at the contracted fixed swap rate up to the triggering event or
the final contract maturity, whichever comes first. The CDS thus arises in the limit of
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the barrier tending towards zero, since in the event of the firm’s default on its debt the
stock price would be traded near zero. If the absolute priority holds, then the stock
would be worth exactly zero. Violations of absolutely priority rules may result in the
firm’s stock trading for some small positive value after the bond default occurs. In
any case, the stock price of a firm in default on its bonds is typically very low.

The EDS premium rate is strictly greater than the CDS rate since the CDS trig-
gering event is also an EDS triggering event, but it is possible that the stock price
may suffer a drop of 70% of the initial price that will trigger the EDS protection
payment without having a debt default event triggering CDS payoffs. This fact at-
tracts some investors seeking credit protection. These investors argue that empirical
evidence supports a positive relationship between severe stock price declines and the
increased probability of default of the reference firm. Empirical studies by Jobst and
de Servigny [16, 17] provide some insightful results about the credit-equity nature of
EDS. Jobst and de Servigny [16] empirically estimate the default probability and the
equity event probability. The authors look at a subset of US firms in the Compustat
database for which S&P credit rating and other risk factors are available. For each
time horizon (1 and 5 years), they observe the number of firms whose stock price
has experienced 70%–90% drops from the initial stock price (relative to the begin-
ning of the observation period) by retrieving the monthly minimum stock price for
each period. They use this result to estimate the equity event probability. Similarly,
in order to estimate the default probability, they look at the number of firms that de-
faulted during the same period of time. Subsequently, they employ these estimated
probabilities as dependent variates in a linear logit model to analyze the explanatory
power of various credit and equity factors at different triggering levels returning con-
sistent results across different maturities. They notice that credit ratings and historical
volatilities have the highest explanatory power among the other factors considered.
This is true in particular for EDS with triggering levels at 50% and below (i.e., when
the stock price needs to drop 50% or more to trigger the EDS payoff). However, for
barrier levels above 50%, the equity related factors become more significant. Thus,
it can be inferred that for low triggering levels the EDS can be seen as a credit-like
instrument, but for higher triggering levels the EDS behaves more as an equity-like
instrument. This remark is also supported by their Kendall’s tau analysis in which
they compare the frequency with which the EDS triggering event also implied the
CDS triggering event (i.e., default). They show empirically that for low triggering
levels (10%–30%), it is quite common that the EDS and CDS protection payments
will be triggered within the same period of time with frequency greater than 90%,
but this is significantly less frequent for triggering levels above 50%. In Jobst and de
Servigny [17], the event correlation was analyzed. They found that EDS triggering
events have a significantly higher correlation than default events and, as expected, this
correlation increases when increasing the barrier level, which can be explained by the
fact that adverse market conditions common to firms in a particular sector would be
sufficient to trigger the EDS payoff if the barrier level is high enough. In addition, the
EDS correlation is lower for investment grade firms than for non-investment grade
firms, which supports their previous results that show that credit ratings and volatility
have a high explanatory power.

Notwithstanding the previously discussed similarities between the EDS and CDS,
there are some advantages inherent in the EDS contract design. Since CDS are trig-
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gered only in the event of default, CDS are indifferent to credit downgrades. In prac-
tice, prior to default, the firm’s debt will experience a series of credit downgrades,
while the stock price establishes new lows over time. EDS triggering events can be
viewed as proxies for credit downgrades. Another important advantage of the EDS
structure is the transparency with which the EDS payoff is triggered based on the fully
observable stock price. While establishing a CDS credit event may not be an entirely
simple matter, the EDS triggering event is unambiguous and fully observable. This
transparency and unambiguity can be particularly important for exchange-traded con-
tracts.

Several recent papers consider EDS pricing. Picone [20] assumes that the stock
price follows a GARCH model. Asmussen et al. [4] obtain an analytical approxima-
tion for EDS rates when the stock price follows a CGMY Lévy process by approx-
imating the Lévy measure by hyper-exponentials. They obtain analytical solutions
for first passage times for the approximating process, calibrate the parameters of the
CGMY model to GM and Ford options, and compute the EDS rates with triggering
barriers at 30% of the initial stock price in the calibrated model. They show that the
market observed CDS rates for both firms are higher than the modeled EDS rates.
A possible explanation for this is that the CGMY process never hits zero, and thus
excludes the possibility of default since the equity never becomes worthless in this
model. As a result, if one were to take the limit of the EDS rates in the CGMY model
as the triggering barrier tends to zero, one would not recover any positive CDS rate,
but instead would obtain zero CDS rates in the limit. In our view, conventional mod-
els used in equity derivatives modeling such as stochastic volatility models and Lévy
processes where the stock price never hits zero do not provide an adequate modeling
framework to investigate the relationship between CDS and EDS contracts.1

In contrast, Albanese and Chen [3], Atlan and Leblanc [5, 6], and Campi and
Sbuelz [10] value EDS in the CEV model, where the stock price can hit zero via
diffusion. Atlan and Leblanc [5, 6] also consider the constant elasticity of stochas-
tic variance (CESV) process and other absolutely continuous time changes of the
CEV process for valuing CDS in models with stochastic volatility. In these models,
the EDS rate is monotonic in the triggering level and, in particular, the EDS rate is
strictly greater than the CDS rate that is obtained in the limit of the zero triggering
level. However, in the CEV model, the event of default can only happen via contin-
uous diffusion of the stock price toward zero. There is no element of surprise—no
possibility of a jump-to-default from a positive stock value. It is well known that
such models produce unrealistically low credit spreads for shorter maturity debt in-
struments and CDS. To remedy this shortcoming, Campi et al. [9] value CDS in a
model where the CEV diffusion process is killed at the first jump time of an indepen-
dent Poisson process with constant intensity. However, the default intensity in their
model is independent of the stock price, implying that the default is as likely when

1In our discussion of EDS and CDS contracts here and throughout the paper, we assume that the recovery
and the corresponding loss-given-default payoff is a fixed percentage of the notional amount of the swap
contract and is the same for EDS and CDS contracts. Thus, we are referring to CDS contracts with fixed
loss-given-default payoffs specified in the contract. CDS contracts with loss-given-default amounts deter-
mined from the market prices of referenced bonds at the time of default are more complicated, since one
needs to model stochastic recovery/LGD.
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the stock price is very high as when the stock price is very low. This assumption con-
tradicts the accumulated empirical evidence that suggests a close link between the
default probability and the stock price, as well as the volatility level.

To overcome these difficulties and to develop a unified credit-equity modeling
framework, Carr and Linetsky [11] propose modeling the stock price as a jump-to-
default extended CEV process where prior to default the stock price follows a dif-
fusion process with constant elasticity of variance. The jump-to-default event has an
intensity that is an affine function of the local variance. This links the default inten-
sity, the stock volatility, and the stock price itself, since in the CEV model the local
volatility is a (negative) power of the stock price. Thus, the JDCEV model exhibits
both the volatility skews observed in the equity options markets and the links be-
tween default probability and the stock price and stock volatility well known in the
credit markets. Carr and Linetsky obtain closed-form solutions for European options,
survival probability, and corporate bonds in the JDCEV model.

The main contribution of this paper is the solution of the EDS pricing problem
in the JDCEV model. We argue that the hybrid credit-equity JDCEV model is well
suited to analyze hybrid credit-equity products such as EDS and overcomes the prob-
lems experienced with other models in the literature discussed above. Indeed, the
event of default (CDS triggering event) in the JDCEV model is either the first hit-
ting of zero for the CEV diffusion or a jump-to-default from a strictly positive value
with an intensity given by an affine function of the CEV local variance, whichever
comes first. The EDS triggering event is either the first hitting time of a triggering
barrier for the CEV diffusion or a jump-to-default that takes the stock from a positive
value above the barrier down to zero, whichever comes first. As such, the EDS rate
is monotonic in the triggering level, and the CDS rate is naturally obtained from the
EDS rate in the limit of the triggering level tending to zero. We stress that mathe-
matically the first passage time problem for the JDCEV process is significantly more
difficult than the European option pricing problem solved in Carr and Linetsky and
requires an entirely different technical approach. We solve this problem by first com-
puting Laplace transforms of various expectations involving the first passage time by
explicitly constructing the resolvent operator for the JDCEV process in the domain
above the barrier and then inverting the Laplace transforms analytically. We are able
to obtain closed form solutions for the present values of the EDS protection pay-
ment, periodic premium payments, and the payment of accrued interest from the last
periodic payment up to the triggering event.

The remainder of this paper is organized as follows. Section 2 describes the EDS
model setup and explains how to value the EDS protection payment, the periodic pre-
mium payments, and the accrued interest payment up to the triggering event in the
jump-to-default extended diffusion framework. In particular, it reduces all the valua-
tion problems to a collection of expectations involving various functionals defined on
paths of the underlying diffusion process. Section 3 develops analytical solutions for
all the expectations necessary to value EDS in the JDCEV model. Section 4 shows the
expressions of the EDS protection payment, the periodic premium payments, and the
accrued interest payment up to the triggering event in the JDCEV model. Section 5
provides numerical examples and an analysis of EDS rates. It investigates the impact
of the triggering barrier level on the EDS rates, and compares them to the CDS rates
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that arise in the limit of the triggering barrier tending to zero. The proofs are included
in the Appendix.

2 EDS model setup

We follow the model setup of Carr and Linetsky [11] and take as given a probability
space (Ω, G,Q) carrying a standard Brownian motion B and an exponential random
variable e ∼ Exp(1) independent of B . We assume frictionless markets, no arbitrage,
and the existence of an equivalent martingale measure (EMM) Q. Prior to default, the
stock price is assumed to follow under the EMM a diffusion process X that solves
the stochastic differential equation

dXt = [
r − q + h(Xt )

]
Xt dt + σ(Xt )Xt dBt , X0 = x > 0, (2.1)

where r, q ≥ 0, σ(Xt ) ≥ 0 and h(Xt ) ≥ 0 are the risk-free rate, dividend yield, in-
stantaneous stock volatility, and the state dependent jump-to-default intensity (hazard
rate).

The event of default is formally defined as the equity becoming worthless, i.e., the
stock price dropping to zero. It can happen in one of two ways. Either the diffusion
process X hits zero via diffusion, or a jump-to-default occurs that takes the stock
price from some positive value to zero, whichever comes first. Formally, the default
time (or killing time) is ζ = T0 ∧ ζ̃ , where T0 = inf{t ≥ 0 : Xt = 0} is the first hitting
time of zero for the diffusion process (2.1) and ζ̃ = inf{t ≥ 0 : Ht ≥ e} is the jump-
to-default time with intensity (hazard rate) h(Xt ) and the integrated hazard process
Ht = ∫ t

0 h(Xu)du.
The EDS contract delivers a protection payment to the EDS buyer at the time of

the triggering event defined as the stock price decline below a pre-specified lower
triggering barrier level. In exchange, the EDS buyer makes periodic premium pay-
ments at time intervals Δ at the equity default swap rate up to the triggering event
or the final maturity, whichever comes first. If the triggering event occurs mid-period
between two premium payments, the buyer pays the accrued interest from the time of
the last premium payment up to the time of the triggering event. The protection pay-
ment is the specified percentage (1 − r) of the EDS notional amount N (by analogy
with the CDS; here, r is the “recovery rate” and 1 − r is the “loss-given-default”, or
rather the “loss-given-the-triggering barrier crossing” event that the EDS pays out to
the EDS buyer). The valuation problem is to determine the arbitrage-free swap rate
� so that the present value of the EDS contract is zero at the contract inception time
(time zero). This swap rate equates the present value of the protection payoff to the
present value of all the premium payments (including possible accrued interest up to
the triggering event). We summarize our notation:

L barrier level or triggering level
T tenor or maturity
N total number of premium payments
Δ = T/N time between premium payments
ti = iΔ, i = 1,2, . . . ,N ith periodic premium payment date
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ζ̃ jump-to-default time with intensity h

TL = inf{t : Xt = L} first hitting time to trigger level L

ζL = ζ̃ ∧ TL first passage time through level L

(triggering event time)
N = 1 EDS notional
r ∈ (0,1] recovery rate
� EDS premium rate.

The present value of the protection payoff is given by

PV(Protection) = (1 − r)E
[
e−rζL1{ζL≤T }

]

= (1 − r)
(
E
[
e−rζ̃ 1{ζ̃≤T }1{TL>ζ̃ }

]+ E
[
e−rTL1{ζ̃>TL}1{TL≤T }

])

= (1 − r)

(∫ T

0
e−ruEx

[
e− ∫ u

0 h(Xv)dvh(Xu)1{TL>u}
]
du

+ Ex

[
e−rTL−∫ TL

0 h(Xu)du1{TL≤T }
])

. (2.2)

The first equality follows from ζL = TL ∧ ζ̃ . The second equality follows from re-
calling that the jump-to-default time ζ̃ has the intensity h(Xt ) and performing the
standard calculations for stopping times with intensities. The first term in parenthe-
ses is the present value of the payoff triggered by a jump-to-default from a positive
stock price, if it occurs prior to maturity and prior to hitting zero via diffusion. The
second term is the present value of the payoff if the stock price hits the barrier level
L via diffusion, if it occurs prior to maturity and prior to the jump-to-default.

The present value of periodic premium payments up to ζL is given by

PV(Premium) = �Δ

N∑

i=1

e−rti E[1{ζL≥ ti }]

= �Δ

N∑

i=1

e−rti Ex

[
e− ∫ ti

0 h(Xu)du1{TL≥ ti }
]
. (2.3)

If the triggering event occurs between the two periodic payments dates ti and ti+1
(i.e., ζL ∈ (ti , ti+1)), the EDS buyer is required to pay the interest accrued since the
previous payment date ti up to the triggering event time ζL. The present value of the
accrued interest is given by (here, [�] denotes the integer part (floor) function)

PV(Acc. Int.) = �E

[
e−rζL

(
ζL − Δ

[
ζL

Δ

])
1{ζL≤T }

]

= �

N−1∑

i=0

E
[
e−rζL(ζL − iΔ)1{ζL∈ (ti ,ti+1)}

]

= �E
[
e−rζLζL1{ζL≤T }

]

− �

N−1∑

i=1

iΔ
(
E
[
e−rζL1{ζL≤ ti+1}

]− E
[
e−rζL1{ζL≤ ti }

])
.
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Observing that since ζL = TL ∧ ζ̃ ,

E
[
e−rζLζL1{ζL≤T }

] =
∫ T

0
ue−ruE

[
e− ∫ u

0 h(Xv)dvh(Xu)1{TL≥u}
]
du

+ E
[
e−rTL−∫ TL

0 h(Xu)duTL1{TL≤T }
]

and

E
[
e−rζL1{ζL≤ ti }

] =
∫ ti

0
e−r uE

[
e− ∫ u

0 h(Xv)dvh(Xu)1{TL≥u}
]
du

+ E
[
e−rTL−∫ TL

0 h(Xu)du1{TL≤ ti }
]
,

the present value of accrued interest can be rewritten as

PV(Acc. Int.) = �

{∫ T

0
ue−ruEx

[
e− ∫ u

0 h(Xv)dvh(Xu)1{TL≥u}
]
du

+ Ex

[
e−rTL−∫ TL

0 h(Xu)duTL1{TL≤T }
]

−
N−1∑

i=1

iΔ

∫ ti+1

ti

e−ruEx

[
e− ∫ u

0 h(Xv)dvh(Xu)1{TL≥u}
]
du

−
N−1∑

i=1

iΔ
(
Ex

[
e−rTL−∫ TL

0 h(Xu)du1{TL≤ ti+1}
]

− Ex

[
e−rTL−∫ TL

0 h(Xu)du1{TL≤ ti }
])}

. (2.4)

The EDS pricing problem is to determine the arbitrage-free equity default swap
rate � such that it makes the present value of the swap equal to zero at inception, or
equivalently, makes the present value of the protection payment equal to the present
value of the periodic premium payments and accrued interest at contract inception.
Put differently,

PV(Protection) = PV(Premium + Acc. Int.). (2.5)

Observe that the expressions for the present value of the premium payments and the
accrued interest are linear in the EDS rate �. We can then immediately solve (2.5) for
� in terms of the various expectations in (2.2)–(2.4). In Sect. 3, we obtain analytical
solutions for all the expectations involved, which will allow us to explicitly compute
the EDS rate �. The CDS swap rate is obtained in the limit L → 0. In this limiting
case some of the expectations vanish, and the remaining expectations simplify dras-
tically so that they can be calculated using the results in Carr and Linetsky [11]. In
contrast, the expectations with L > 0 involving the first hitting time TL require us to
take a different approach.
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3 Solving the first passage time problem for the jump-to-default extended CEV
process

The instantaneous volatility in the CEV model is specified as a power function (see
Cox [12], Schroder [22], Davydov and Linetsky [13, 14], and Linetsky [18, 19] for
background on the CEV process), i.e.,

σ(x) = axβ, (3.1)

where β < 0 is the volatility elasticity parameter and a > 0 is the volatility scale
parameter. The CEV volatility specification exhibits the leverage effect and leads
to an implied volatility skew in options prices. To be consistent with the empirical
evidence linking corporate bond yields and CDS rates to equity volatility, Carr and
Linetsky [11] propose to specify the default intensity as an affine function of the
instantaneous stock variance, namely

h(x) = b + c σ 2(x) = b + c a2x2β, (3.2)

where b ≥ 0 is a constant parameter governing the state-independent part of the jump-
to-default intensity and c ≥ 0 is a constant parameter governing the sensitivity of the
intensity to the local volatility σ 2. In Carr and Linetsky [11], a and b are taken to
be deterministic functions of time. In the present paper, we assume that a and b are
constant. The time homogeneity assumption is necessary to be able to solve the first
passage time problem analytically (it is not necessary to solve the pricing problem
for European options).

To value EDS contracts in the JDCEV model and, in particular, compute EDS
rates, we need to calculate the expectations

Ex

[
e−rTL−∫ TL

0 h(Xu)du1{TL≤ t}
]
, Ex

[
e−rTL−∫ TL

0 h(Xu)duTL1{TL≤ t}
]
, (3.3)

Ex

[
e− ∫ t

0 h(Xu)du1{TL≥ t}
]
, Ex

[
e− ∫ t

0 h(Xu)duh(Xt )1{TL>t}
]
, (3.4)

where X is the diffusion process solving the SDE (2.1) with the CEV volatility (3.1)
and JDCEV default intensity (3.2) and starting at X0 = x at time zero. Fortunately,
all these expectations can be evaluated in closed form. First, we calculate the Laplace
transforms of these expectations with respect to time using the analytical theory of
diffusion processes. Namely, we compute in closed form the relevant resolvents. Sec-
ond, we are able to invert the resulting Laplace transforms analytically. Finally, the
results are substituted in the expressions for the present values of the protection pay-
ment, periodic premium payments and the accrued interest, and after some simplifi-
cations, this yields the analytical solution to the EDS pricing problem.

To compute the first expectation in (3.3), we start by taking the Laplace transform
in time, i.e.,

∫ ∞

0
e−sT Ex

[
e−rTL−∫ TL

0 h(Xu)du1{TL≤T }
]
dT = 1

s
Ex

[
e−(r+s)TL−∫ TL

0 h(Xu)du
]
. (3.5)
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From the analytical theory of diffusion processes, it is well known that the Laplace
transform on the right-hand side has the form (e.g., Borodin and Salminen [7], p. 18)

1

s
Ex

[
e−(r+s)TL−∫ TL

0 h(Xu)du
]= 1

s

φs+r (x)

φs+r (L)
, (3.6)

where φs(x) is the decreasing solution of the ordinary differential equation

Gu(x) = s u(x) (3.7)

and G is the infinitesimal generator of the JDCEV diffusion process with killing at
the rate h (here μ := r − q), i.e.,

Gu(x) = 1

2
a2x2β+2 d2u

dx2
(x)+ (μ+b+c a2x2β

)
x

du

dx
(x)− (b+c a2x2β

)
u(x). (3.8)

Fortunately, in this case, the ODE admits an explicit analytical solution in terms of
the first and second Whittaker functions, Mκ,m(z) and Wκ,m(z), respectively.

Theorem 3.1 For a JDCEV diffusion with the infinitesimal generator (3.8) with pa-
rameters β < 0, a > 0, b ≥ 0, c ≥ 0 and μ + b 	= 0, the increasing and decreasing
solutions ψs and φs of the ODE (3.7) on the interval (L,∞) and with the increasing
solution satisfying the Dirichlet boundary condition ψs(L) = 0 at L > 0 are

ψs(x) = x
1
2 −c+βeε A

2 x−2β × [
W

κ(s), ν
2

(
AL−2β

)
M

κ(s), ν
2

(
Ax−2β

)

− M
κ(s), ν

2

(
AL−2β

)
W

κ(s), ν
2

(
Ax−2β

)]
, (3.9)

φs(x) = x
1
2 −c+βeε A

2 x−2β

W
κ(s), ν

2

(
Ax−2β

)
,

where Mκ,ν/2(z) and Wκ,ν/2(z) are the first and second Whittaker function with
indexes

ν = 1 + 2c

2|β| , κ(s) = ε
1 − ν

2
− s + ξ

ω
,

where

ω = 2
∣∣β(μ + b)

∣∣, ξ = 2c(μ + b) + b, A = |μ + b|
a2|β| ,

ε = sign
(
β(μ + b)

)
.

(3.10)

The Wronskian ws of the two solutions reads

ws = 2|μ + b|Γ (1 + ν)

a2Γ (ν/2 + 1/2 − κ(s))
W

κ(s), ν
2

(
AL−2β

)
.

Proof See Appendix A. �

The Laplace transform (3.6) can be inverted analytically by applying the Cauchy
residue theorem.



Pricing equity default swaps under the JDCEV model 523

Theorem 3.2 Let X be a JDCEV diffusion with constant parameters β < 0, a > 0,
b ≥ 0, c ≥ 0 and μ + b 	= 0. Then for L > 0 we have

Ex

[
e−rTL−∫ TL

0 h(Xu)du1{TL≤T }
]

=
(

x

L

) 1
2 −c+β

eε A
2 (x−2β−L−2β ) ×

{
W

ε 1−ν
2 − r+ξ

ω
, ν

2
(Ax−2β)

W
ε 1−ν

2 − r+ξ
ω

, ν
2
(AL−2β)

+
∞∑

n=1

ωe−(ω(κn−ε 1−ν
2 )+r+ξ)T

ω(κn − ε 1−ν
2 ) + r + ξ

W
κn, ν

2
(Ax−2β)

[ ∂
∂κ

W
κ, ν

2
(AL−2β)]|κ=κn

}

, (3.11)

where

{κn, n = 1,2, . . . } = {
κ
∣∣W

κ, ν
2

(
AL−2β

)= 0
}

are the zeros of the Whittaker function W
κ, ν

2
(AL−2β) considered as a function of its

first index with the second index and the argument kept fixed.

Proof See Appendix A. �

The second expectation in (3.3) immediately follows from the identity

E
[
e−rTL−∫ TL

0 h(Xu)duTL1{TL≤T }
]= − ∂

∂ρ
E
[
e−ρTL−∫ TL

0 h(Xu)du1{TL≤T }
]
∣∣∣∣
ρ=r

.

The resulting expression takes the form

E
[
e−rTL−∫ TL

0 h(Xu)du TL 1{TL≤T }
]

=
(

x

L

)β−c+ 1
2

eε A
2 (x−2β−L−2β ) ×

{ ∞∑

n=1

(
W

κn, ν
2
(Ax−2β)

[ ∂
∂κ

W
κ, ν

2
(AL−2β)]|κ=κn

× ω[(ω(κn − ε 1−ν
2 ) + r + ξ)T + 1]e−(ω(κn−ε 1−ν

2 )+r+ξ)T

(ω(κn − ε 1−ν
2 ) + r + ξ)2

)

+
( [ ∂

∂ρ
Wρ, ν

2
(Ax−2β)]

ωWρ, ν
2
(AL−2β)

− Wρ, ν
2
(Ax−2β)[ ∂

∂ρ
Wρ, ν

2
(AL−2β)]

ω[Wρ, ν
2
(AL−2β)]2

)∣∣
∣∣
ρ= ε(1−ν)

2 − r+ξ
ω

}

.

To compute the expectations in (3.4), we need to compute the expectations

Ex

[
e− ∫ t

0 h(Xu)du1{TL≥ t}
]
, Ex

[
e− ∫ t

0 h(Xu)duX
2β
t 1{TL>t}

]
.

From the analytical theory of diffusion processes, the Laplace transform of the ex-
pectation takes the form

∫ ∞

0
e−stEx

[
e− ∫ t

0 h(Xu)duf (Xt )1{TL≥ t}
]
dt =

∫ ∞

L

f (y)Gs(x, y) dy,
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where Gs(x, y) is the resolvent kernel or Green’s function of the diffusion process
X with the infinitesimal generator (3.8) and the killing boundary condition at the
lower barrier L. The Green’s function admits an explicit representation in terms of
the increasing and decreasing solutions ψs and φs of the ODE (3.7) on the interval
(L,∞) and with the increasing solution satisfying the Dirichlet boundary condition
ψs(L) = 0 at L (see Borodin and Salminen [7], p. 19; note that we define the Green’s
function with respect to the Lebesgue measure, while Borodin and Salminen define it
with respect to the speed measure m(y) dy, where m(y) is the speed density (A.2)).
Indeed,

Gs(x, y) = m(y)

ws

{
ψs(x)φs(y), x ≤ y,

ψs(y)φs(x), y ≤ x.
(3.12)

The Wronskian ws = (ψ ′
s(x)φs(x) − ψs(x)φ′

s(x))/s(x) of the two solutions is inde-
pendent of x (here, s(x) is the scale density (A.2) of the diffusion process). This leads
to the explicit solution for the Green’s function (3.12).

Theorem 3.3 For μ + b 	= 0, the Green’s function of the JDCEV diffusion on the
interval (0,∞) with killing at the rate h and the killing boundary at the level L > 0
is given by

Gs(x, y) = Γ (1/2 + ν/2 − κ(s))x
1
2 −c+βeε A

2 x−2β

|μ + b|Γ (1 + ν)
yc− 3

2 −βe−ε A
2 y−2β

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
M

κ(s), ν
2

(
Ax−2β

)

−M
κ(s), ν

2
(AL−2β )W

κ(s), ν
2
(Ax−2β )

W
κ(s), ν

2
(AL−2β )

)
W

κ(s), ν
2

(
Ay−2β

)
, x ≤ y,

(
M

κ(s), ν
2

(
Ay−2β

)

−M
κ(s), ν

2
(AL−2β )W

κ(s), ν
2
(Ay−2β )

W
κ(s), ν

2
(AL−2β)

)
W

κ(s), ν
2

(
Ax−2β

)
, y ≤ x,

where Mκ,m(z) and Wκ,m(z) are the first and second Whittaker functions.

Proof Substitute the fundamental solutions ψs and φs and the Wronskian ws from
Theorem 3.1 in (3.12) (the speed density m(x) of the JDCEV process is given
in (A.2)). �

To compute the expectation Ex[e− ∫ t
0 h(Xu)du1{TL>t}Xp

t ] (the pth moment of the
process X killed at the rate h and at the first hitting time TL of the lower barrier L), we
first compute the integral

∫∞
L

ypGs(x, y) dy and then invert the Laplace transform to
recover the expectation. Fortunately, we are able to accomplish both in closed form.
The expectations in (3.4) are obtained by setting p = 0 and p = 2β , respectively.

Theorem 3.4 Let X be a JDCEV diffusion process with the infinitesimal genera-
tor (3.8) with constant parameters β < 0, a > 0, b ≥ 0, c ≥ 0 and μ + b > 0. Then
for L > 0 and p ∈ R, we have
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Ex

[
e− ∫ t

0 h(Xu)du1{TL>t}Xp
t

]

=
∞∑

n=0

A
1−2c−2p

4|β| − 1
2 (

1−p
2|β| )nΓ (1 + 2c+p

2|β| )

n!Γ (1 + ν)
x

1
2 −c+β

× e− A
2 x−2β

e(p(μ+b)−(b+ωn))t ×
{
Mν−1

2 +n−(
2c+p
2|β| ), ν

2

(
Ax−2β

)

−
Mν−1

2 +n−(
2c+p
2|β| ), ν

2
(AL−2β)

Wν−1
2 +n−(

2c+p
2|β| ), ν

2
(AL−2β)

Wν−1
2 +n−(

2c+p
2|β| ), ν

2

(
Ax−2β

)}

+
∞∑

n=1

e−(ω(κn− ν−1
2 )+ξ)t x

1
2 −c+βe− A

2 x−2β

× M
κn, ν

2
(AL−2β)W

κn, ν
2
(Ax−2β)

Γ (1 + ν)[ d
dκ

W
κ, ν

2
(AL−2β)]|κ=κn

×
{

A
1−2c−2p

4|β| − 1
2
Γ (1 − 1−p

2|β| )Γ (1 + 2c+p
2|β| )Γ (ν−1

2 − κn − 2c+p
2|β| )

Γ ( 1−ν
2 − κn)

− A
1+ν

2 L2c+p−2βΓ (−ν)Γ ( 1+ν
2 − κn)

(1 + 2c+p
2|β| )Γ ( 1−ν

2 − κn)

× 2F2

⎛

⎝
1 + 2c+p

2|β| , 1+ν
2 − κn

2 + 2c+p
2|β| , 1 + ν

;AL−2β

⎞

⎠

− A
1−ν

2 L−2β−1+pΓ (ν)

(1 − 1−p
2|β| )

2F2

⎛

⎝
1 − 1−p

2|β| ,
1−ν

2 − κn

2 − 1−p
2|β| , 1 − ν

;AL−2β

⎞

⎠
}

, (3.13)

where κn are the zeros of the Whittaker function W
κ, ν

2
(AL−2β) as defined in Theo-

rem 3.2, 2F2 is the generalized hypergeometric function, Γ (z) is the Gamma func-
tion, and (z)n = Γ (z + n)/Γ (z) is the Pochhammer symbol.

For L = 0 and p > 2(β − c), we have

Ex

[
e− ∫ t

0 h(Xu)du1{TL>t}Xp
t

] = A
1−2c−2p

4|β| − 1
2 Γ (1 + 2c+p

2|β| )x
1
2 −c+β

e
A
2 x−2β

Γ (1 + ν)

×
∞∑

n=0

e(p(μ+b)−(b+ωn))t
(

1−p
2|β| )n
n!

× Mν−1
2 +n−(

2c+p
2|β| ), ν

2

(
Ax−2β

)
. (3.14)

Proof See Appendix A. �
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Remark 3.5 To save space, we formulated Theorem 3.4 for the case μ + b > 0. The
expressions for the case μ + b < 0 are similar and are included in Appendix B.

4 Pricing EDS under the JDCEV model

Having explicitly computed all the required expectations, we are now ready to write
down the results for the present values of the protection payoff, periodic premium
payments, and accrued interest in the JDCEV model. The expressions (2.2) and (2.4)
for the protection payment and the accrued interest involve integrals with respect to
time. These integrals are computed in closed form. In addition, the expressions for
the accrued interest and the periodic premium payments contain summations over
the coupon payment dates ti ; see (2.4) and (2.3). These sums collapse to closed
form expressions by means of the two identities

∑N
i=1 ai = a(1 − aN)/(1 − a)

and
∑N

i=1 iai = (a − (1 + N)aN+1 + NaN+2)/((a − 1)2). The final results for the
present values of the protection payment, periodic premium payments, and accrued
interest simplify as follows.

4.1 Protection payoff

The present value of the EDS protection payoff (2.2) with the triggering barrier L > 0
in the JDCEV model with μ + b > 0 reduces to the expression (similar expressions
for μ + b < 0 can be obtained by using the result in Appendix B)

PV(Protection)

= (1 − r)

(
x

1
2 −c+βΓ ( c

|β| + 1)

Γ (1 + ν)
e− A

2 x−2β

(4.1)

×
∞∑

n=1

{
b L+(n − 1,0)

r + b + ω (n − 1)

(
1 − e−(r+b+ω (n−1))T

)

+ |β|a2 L+(n − 1,2β)

r + b + ωn

(
1 − e−(r+b+ωn)T

)

+ b M+(n,0) + |β|a2 M+(n,2β)

r + ω(κn − ν−1
2 ) + ξ

(
1 − e−(r+ω(κn− ν−1

2 )+ξ)T
)}

+
(

x

L

)β−c+ 1
2

e− A
2 (x−2β−L−2β)

{
Wν−1

2 − r+ξ
ω

, ν
2
(Ax−2β)

Wν−1
2 − r+ξ

ω
, ν

2
(AL−2β)

+
∞∑

n=1

ωe−(ω(κn− ν−1
2 )+r+ξ)T

ω(κn − ν−1
2 ) + r + ξ

W
κn, ν

2
(Ax−2β)

[ ∂
∂κ

W
κ, ν

2
(AL−2β)]|κ=κn

})

.
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In the CDS limit L = 0, the expression simplifies to

PV(Protection) = (1 − r)
x

1
2 −c+βΓ ( c

|β| + 1)

Γ (1 + ν)
e− A

2 x−2β

×
∞∑

n=1

{
b D+(n − 1,0)(1 − e−(r+b+ω (n−1))T )

r + b + ω (n − 1)

+ |β|a2 D+(n − 1,2β)(1 − e−(r+b+ωn)T )

r + b + ωn

}
. (4.2)

In (4.1) and (4.2), we have introduced the notation

L+(n,p) := A
1−2c
4|β| + 1

2 −δp (1 + 1
2|β| − δp)n

n! ×
{
M 1−2c

4|β| + 2n+1
2 −δp, ν

2

(
Ax−2β

)

−
M 1−2c

4|β| + 2n+1
2 −δp, ν

2
(AL−2β)

W 1−2c
4|β| + 2n+1

2 −δp, ν
2
(AL−2β)

W 1−2c
4|β| + 2n+1

2 −δp, ν
2

(
Ax−2β

)}
,

M+(n,p) := M
κn, ν

2
(AL−2β)W

κn, ν
2
(Ax−2β)

[ d
dκ

W
κ, ν

2
(AL−2β)]|κ=κn

×
{Γ (ν) 2F2

(δp − 1
2|β| ,

1−ν−2κn

2

1 + δp − 1
2|β| , 1 − ν

;AL−2β
)

A
ν−1

2 L2βδp+1Γ ( c
|β| + δp)( 1

2|β| − δp)

+ A
1−2c
4|β| + 1

2 −δp
Γ (δp − 1

2|β| )Γ ( 1−2c
4|β| + 1

2 − δp − κn)

Γ ( 1−ν
2 − κn)

−
Γ (−ν)Γ ( 1+ν−2κn

2 ) 2F2
(δp + c

|β| ,
1+ν−2κn

2
1 + δp + c

|β| , 1 + ν
;AL−2β

)

A− 1+ν
2 L2βδp−2cΓ ( c

|β| + δp + 1)Γ ( 1−ν
2 − κn)

}

,

D+(n,p) := A
1−2c
4|β| + 1

2 −δp
(1 + 1

2|β| − δp)n

n! M 1−2c
4|β| + 2n+1

2 −δp, ν
2

(
Ax−2β

)
,

where {κn, n = 1,2, . . . } = {κ|W
κ, ν

2
(AL−2β) = 0

}
and δp = {1, p = 0,

0, p = 2β.

4.2 Periodic premium payments

The present value of the EDS periodic premium payments (2.3) with the triggering
barrier L > 0 in the JDCEV model with μ + b > 0 reduces to the expression
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PV(Premium) = �Δ
x

1
2 −c+βΓ ( c

|β| + 1)

Γ (1 + ν)
e− A

2 x−2β

×
∞∑

n=1

{(
1 − e−(r+b+ω (n−1))ΔN

e(r+b+ω (n−1))Δ − 1

)
L+(n − 1,0)

+
(

1 − e−(r+ω(κn− ν−1
2 )+ξ)ΔN

e(r+ω(κn− ν−1
2 )+ξ)Δ − 1

)
M+(n,0)

}
.

In the CDS limit L = 0, the expression simplifies to

PV(Premium) = �Δ
x

1
2 −c+βΓ ( c

|β| + 1)

Γ (1 + ν)
e− A

2 x−2β

×
∞∑

n=1

(
1 − e−(r+b+ω (n−1))ΔN

e(r+b+ω (n−1))Δ − 1

)
D+(n − 1,0).

4.3 Accrued interest

The present value of the EDS accrued interest payment (2.4) with the triggering bar-
rier L > 0 in the JDCEV model with μ + b > 0 reduces to the expression

PV(Acc. Int.)

= �
x

1
2 −c+βe− A

2 x−2β
Γ ( c

|β| + 1)

Γ (1 + ν)

×
∞∑

n=1

{
b L+(n − 1,0)(1 − e−(r+b+ω (n−1))T )

r + b + ω (n − 1)

×
(

1

r + b + ω (n − 1)
+ Δ

1 − e(r+b+ω (n−1))Δ

)

+ L+(n − 1,2β)(1 − e−(r+b+ωn)T )

(r + b + ωn)/(|β|a2)

(
1

r + b + ωn
+ Δ

1 − e(r+b+ωn)Δ

)

+ (b M+(n,0) + |β|a2 M+(n,2β))(1 − e−(r+ω(κn− ν−1
2 )+ξ)T )

r + ω(κn − ν−1
2 ) + ξ

×
(

1

r + ω(κn − ν−1
2 ) + ξ

+ Δ

1 − e(r+ω(κn− ν−1
2 )+ξ)Δ

)}

+ �

(
x

L

)β−c+ 1
2 e− Ax−2β

2

e− AL−2β

2

{ ∞∑

n=1

W
κn, ν

2
(Ax−2β)

( 2κn−ν+1
2 + r+ξ

ω
)[ ∂

∂κ
W

κ, ν
2
(AL−2β)]|κ=κn

×
(

e−(ω(κn− ν−1
2 )+r+ξ)T

ω(κn − ν−1
2 ) + r + ξ

− Δ(1 − e−(ω(κn− ν−1
2 )+r+ξ)T )

1 − e(ω(κn− ν−1
2 )+r+ξ)Δ

)

+
( [ ∂

∂ρ
Wρ, ν

2
(Ax−2β)]

ω[Wρ, ν
2
(AL−2β)] − Wρ, ν

2
(Ax−2β)[ ∂

∂ρ
Wρ, ν

2
(AL−2β)]

ω[Wρ, ν
2
(AL−2β)]2

)∣∣∣∣
ρ= ν−1

2 − r+ξ
ω

}

.
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In the CDS limit L = 0, the expression simplifies to:

PV(Acc. Int.)

= �
x

1
2 −c+βΓ ( c

|β| + 1)

Γ (1 + ν)
e− A

2 x−2β

×
∞∑

n=1

{
b D+(n − 1,0)(1 − e−(r+b+ω (n−1))T )

r + b + ω (n − 1)

×
(

1

r + b + ω (n − 1)
+ Δ

1 − e(r+b+ω (n−1))Δ

)

+ D+(n − 1,2β)(1 − e−(r+b+ωn)T )

(r + b + ωn)/(|β|a2)

(
1

r + b + ωn
+ Δ

1 − e(r+b+ωn)Δ

)}
.

5 Numerical examples

To illustrate the results in Sect. 4, we consider in this section EDS contracts writ-
ten on the JDCEV process with the parameters listed in Table 1. The risk-free rate r

is 5%, the dividend yield q is zero, the volatility elasticity parameter is β = −1, the
initial stock price is S0 = $50. We consider two values of the volatility scale para-
meter a to illustrate the impact of the at-the-money volatility level. We choose a in
the local volatility function σ(S) = aSβ so that when the stock price is fifty dol-
lars (S = 50), the local volatility σ(50) at this level is equal to 20% per annum in
our first example (Example 1) and 40% in the second example (Example 2), namely
a = 0.20 ∗ 50−1 = 10 and a = 0.40 ∗ 50−1 = 20, respectively. To compare the stan-
dard CEV model and the JDCEV model, we consider both the standard CEV and the
JDCEV specifications. In the standard CEV model, b = c = 0. In the JDCEV model,
the constant part of the default intensity b is taken to be 2% per annum. To illus-
trate the effect of increasing the influence of the volatility on the default intensity, we
consider two specifications c = 1 and c = 2 in the JDCEV case. We consider CDS
and EDS contracts with the recovery rate r of 50% per dollar of notional and with

Table 1 CDS and EDS
specification and JDCEV
parameter values

Parameters Example 1 Example 2

Δ 0.25 0.25

r 0.5 0.5

L {0,15, 25} {0,15, 25}
S0 50 50

r 0.05 0.05

q 0 0

(b, c) pairs {(0,0), (0.02,1), (0.02,2)} {(0,0), (0.02,1)}
β −1 −1

σ 0.20 0.40
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Fig. 1 CDS and EDS rate curves in the CEV and JDCEV models with σ(50) = 0.2 (a = 10)

quarterly premium payments, i.e., Δ = 0.25 years. We consider EDS contracts with
triggering levels at 30% and 50% of the initial stock price. We denote these contracts
EDS30 and EDS50, respectively.

Figure 1 plots the CDS, EDS30, and EDS50 swap rates as functions of the swap
maturity (tenor) for the cases with σ(50) = 0.2. We observe that the behavior of
the EDS and CDS rate curves is strikingly different in the standard CEV and JD-
CEV models. In the standard CEV model, the curves start at zero, as there is no
jump-to-default. In the JDCEV model, the curves start at one-half the instantaneous
jump-to-default intensity (recall that the recovery rate is set to 50% of the notional
amount), as CDS and EDS contracts may all be simultaneously triggered by a jump-
to-default. We also observe that in the CEV model, there are large spreads between
the CDS, EDS30, and EDS50 rates. This is due to the fact that the contracts can only
be triggered by the CEV diffusion hitting lower barrier levels at 0.5 × S0, 0.3 × S0,
and at zero. In the JDCEV model, the corresponding spreads are much smaller since
in addition to hitting the levels via continuous diffusion, all the contracts may be si-
multaneously triggered by a jump-to-default. In particular, CDS and EDS30 rates are
very close, indicating that for this set of parameter specifications EDS30 contracts
behave similarly to CDS contracts. The rates on EDS50 contracts are significantly
higher, since the probability of hitting the level equal to 50% of the initial asset price
via continuous diffusion is substantial, in addition to the probability of a jump-to-
default that is common to all the contracts. We also observe that the spreads of the
EDS contracts over the CDS contracts decrease as the default intensity parameter c

increases. This is due to the increased probability of a jump-to-default triggering all
the contracts simultaneously, as well as the decrease in the probability that no jump-
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Fig. 2 CDS and EDS rate curves in the CEV and JDCEV models with σ(50) = 0.4 (a = 20)

to-default occurs prior to maturity (CDS is not triggered), but the stock price falls
to the triggering barrier level (EDS is triggered). These observations indicate that the
JDCEV model specification is in better agreement with the empirically observed high
credit and equity event correlation (Jobst and de Servigny [16] Kendall’s tau) than the
alternative models employed in the literature for the valuation of EDS that do not in-
clude the possibility of a jump-to-default, such as the standard CEV or Lévy process
based models.

Figure 2 plots the CDS, EDS30, and EDS50 swap rates as functions of the swap
maturity (tenor) for the cases with higher volatility σ(50) = 0.4. Again, the standard
CEV swap rate curves start at zero, but increase rapidly due to the increased prob-
ability of hitting the lower barriers via diffusion in the model with higher volatility.
The JDCEV curves start at one-half the default intensity. The spreads between CDS
and EDS contracts are much smaller in the JDCEV model that in the CEV model due
to the substantial probability of a jump-to-default triggering all the contracts simul-
taneously. However, in this higher volatility situation, the spreads of EDS rates over
CDS rates in the JDCEV model are greater than the very tight spreads observed in
the lower volatility situation in Fig. 1. This is due to the fact that while the jump-
to-default probability increases with the increase in the volatility through the default
intensity dependence on volatility, the probability of hitting the lower barriers by con-
tinuous diffusion increases as well. To further illustrate, Tables 2 and 3 show each of
the components needed to price the EDS and CDS contracts, i.e., the present value
of the protection payoff, premium payments and accrued interest, under the CEV and
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JDCEV models.2 We observe that the present value of the protection payment un-
der the CEV model is very small for short maturities. The comparison of the swap
curves under the standard CEV and JDCEV models in the higher volatility scenario
further demonstrates that the JDCEV model offers a significant improvement in fi-
nancial realism over the standard CEV model for valuing CDS and EDS contracts.
The standard CEV model produces CDS and EDS swap rates that are unrealistically
low for short maturities, then increase rapidly with maturity, and produce an exagger-
ated hump for mid-maturities. Moreover, the EDS over CDS spreads produced under
the CEV specification with high volatility are much larger than those produced under
the JDCEV. This is in contradiction with the empirical evidence produced by Jobst
and de Servigny [16].

6 Conclusions

Equity default swaps (EDS) are hybrid credit-equity products that provide a bridge
from credit default swaps (CDS) to equity derivatives with barriers. In this paper, we
develop an analytical solution to the EDS pricing problem under the jump-to-default
extended constant elasticity of variance model of Carr and Linetsky [11]. We argue
that the JDCEV model is well suited to study such hybrid credit-equity products as
EDS, as it naturally incorporates the empirically observed relationships between the
stock price, stock price volatility, and credit spreads. Mathematically, we obtain an
analytical solution to the first passage time problem for the JDCEV diffusion process
with killing. In particular, we obtain analytical results for the present values of the
protection payoff at the triggering event, periodic premium payments up to the trig-
gering event, and the interest accrued from the previous periodic premium payment
up to the triggering event, and we determine arbitrage-free equity default swap rates
and compare them with CDS rates. Generally, the EDS rate is strictly greater than the
corresponding CDS rate. However, when the triggering barrier is set to be a low per-
centage of the initial stock price and the volatility of the underlying firm’s stock price
is moderate, the EDS and CDS rates are quite close. Given the current movement to
list CDS contracts on organized derivatives exchanges to alleviate the problems with
the counterparty risk and the opacity of over-the-counter CDS trading, we argue that
EDS contracts may prove to be an interesting alternative to CDS contracts, offering
some advantages due to the unambiguity and transparency of the triggering event
based on the observable stock price.

Acknowledgements The authors would like to thank Javier Sesma for his helpful advice on finding
roots of Whittaker functions. This research was supported by the National Science Foundation under grant
DMS-0802720.

2In our implementation, we used the built-in functions in Mathematica for the evaluation of Laguerre and
generalized hypergeometric 2F2 functions. To compute the Whittaker functions, their derivatives with
respect to the first index and their roots with respect to the first index κn , we implemented the algorithms
developed by Abad and Sesma [1, 2]. We found that these algorithms converge for large values of the first
index faster than the built-in confluent hypergeometric functions available in Mathematica.
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Appendix A: Proofs

A.1 Proof of Theorem 3.1

For the ODE (3.7) with μ + b 	= 0, the transformation u(x) = x
1
2 −c+βeε A

2 x−2β
v(y),

where y = Ax−2β , reduces it to the Whittaker equation for the function v(y), namely

d2v

dy2
(y) +

(
−1

4
+ κ(s)

y
+ 1 − ν2

4y2

)
v(y) = 0, (A.1)

with A, ε, ν, κ(s), ξ , and ω defined in (3.10). Inverting the change of variables,
the increasing and decreasing solutions of the Whittaker ODE (A.1) are given by the
Whittaker functions v1(y) = M

κ(s), ν
2
(y) and v2(y) = W

κ(s), ν
2
(y), respectively. The

Wronskian is given by

W(v1, v2)(y) := v1(y)v′
2(y) − v′

1(y)v2(y) = − Γ (1 + ν)

Γ ( 1+ν
2 − κ(s))

.

For β < 0, the increasing solution of the ODE (3.7) on the interval (L,∞) satisfying
the boundary condition u(L) = 0 is

ψs(x) = x
1
2 −c+βeε A

2 x−2β [
W

κ(s), ν
2

(
AL−2β

)
M

κ(s), ν
2

(
Ax−2β

)

− M
κ(s), ν

2

(
AL−2β

)
W

κ(s), ν
2

(
Ax−2β

)]
.

The decreasing solution vanishing at infinity, limx↑∞ u(x) = 0, is

φs(x) = x
1
2 −c+βeε A

2 x−2β

W
κ(s), ν

2

(
Ax−2β

)
.

The Wronskian is

W(φs,ψs)(x) = 2|β|Ax−2ceε Ax−2β Γ (1 + ν)

Γ ( 1+ν
2 − κ(s))

W
κ(s), ν

2

(
AL−2β

)
.

The speed and scale densities of the JDCEV diffusion are

m(x) = 2

a2
x2c−2−2βe−ε Ax−2β

, s(x) = x−2ceε Ax−2β

. (A.2)

The Wronskian ws := W(φs(x),ψs(x))/s(x) with respect to the scale density is ob-
tained by dividing the Wronskian by the scale density. �

A.2 Proof of Theorem 3.2

The Laplace transform in (3.5), where we substitute the result (3.9) in the explicit
representation for the Laplace transform (3.6), can be inverted via the Bromwich
Laplace inversion formula

Ex

[
e−rTL−∫ TL

0 h(Xu)du1{TL≤T }
]

=
(

x

L

) 1
2 −c+β

eε A
2 (x−2β−L−2β)

∫ γ+i ∞

γ−i ∞
esT

W
κ(s+r), ν

2
(Ax−2β)

s W
κ(s+r), ν

2
(AL−2β)

ds

2π i
.
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As a function of the complex variable s, the integrand has simple poles at s = 0 and
at s = sn = −ω(κn − ε 1−ν

2 ) − (r + ξ), where

{κn, n = 1,2, . . .} = {
κ
∣∣W

κ, ν
2

(
AL−2β

)= 0
}
.

The zeros κn of the function W
κ, ν

2
(AL−2β) are located on the real line with κ > 1+ν

2
(see Slater [23] p. 105), which implies that the poles of the integrand are located on
the real line (s real) with

s < −ω

(
1 + ν

2
− ε

1 − ν

2

)
− (r + ξ),

which means that s < −(ων + r + ξ) < 0 for ε = 1 or s < −(ω + r + ξ) < 0 for
ε = −1. Applying the Cauchy residue theorem and calculating the residues at s = 0
and s = sn = −ω(κn − ε 1−ν

2 ) − (r + ξ), we arrive at the result (3.11).

A.3 Proof of Theorem 3.4

We start with the representation:

Ex

[
e− ∫ t

0 h(Xu)duf (Xt )1{TL>t}
]= 1

2π i

∫ γ+i ∞

γ−i ∞
est Rsf (x) ds, (A.3)

where Rs is the resolvent operator of the JDCEV diffusion process on the interval
(L,∞) killed at the rate h and killed at the lower boundary L. The resolvent op-
erator can be written as the integral operator Rsf (x) = ∫∞

L
f (y)Gs(x, y) dy with

the resolvent kernel (Green’s function) (3.13), assuming the integrability condition∫∞
L

|f (y)Gs(x, y)|dy < ∞ is satisfied. We first consider the case with L > 0 (EDS).
Using the explicit expression (3.13) for the Green’s function Gs(x, y) with ε = −1
(for β < 0 and μ + b > 0), for the power function f (x) = xp we obtain

Rsx
p = Γ ( 1+ν

2 − κ(s))

(μ + b)Γ (1 + ν)
x

1
2 −c+βe− A

2 x−2β

×
{[

M
κ(s), ν

2

(
Ax−2β

)− M
κ(s), ν

2
(AL−2β)

W
κ(s), ν

2
(AL−2β)

W
κ(s), ν

2

(
Ax−2β

)
]

×
∫ ∞

x

yp+c− 3
2 −βe

A
2 y−2β

W
κ(s), ν

2

(
Ay−2β

)
dy

+ W
κ(s), ν

2

(
Ax−2β

)∫ x

L

yp+c− 3
2 −βe

A
2 y−2β

[
M

κ(s), ν
2

(
Ay−2β

)

− M
κ(s), ν

2
(AL−2β)

W
κ(s), ν

2
(AL−2β)

W
κ(s), ν

2

(
Ay−2β

)]
dy

}
.

Using the identity Wk,m(x) = Γ (−2m)
Γ (1/2−m−k)

Mk,m(x) − Γ (−2m)Γ (1+2m)
Γ (1/2+m−k)Γ (1−2m)

Mk,−m(x),
we further rewrite the resolvent as
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Rsx
p = Γ ( 1+ν

2 − κ(s))

(μ + b)Γ (1 + ν)
x

1
2 −c+βe− A

2 x−2β

{
M

κ(s), ν
2

(
Ax−2β

)

×
[∫ ∞

x

yp+c− 3
2 −βe

A
2 y−2β

W
κ(s), ν

2

(
Ay−2β

)
dy

+ Γ (−ν)

Γ ( 1−ν
2 − κ(s))

∫ x

L

yp+c− 3
2 −βe

A
2 y−2β

M
κ(s), ν

2

(
Ay−2β

)
dy

]

− M
κ(s), ν

2
(AL−2β)W

κ(s), ν
2
(Ax−2β)

W
κ(s), ν

2
(AL−2β)

×
∫ ∞

L

yp+c− 3
2 −βe

A
2 y−2β

W
κ(s), ν

2

(
Ay−2β

)
dy

− Γ (−ν)Γ (1 + ν)M
κ(s),− ν

2
(Ax−2β)

Γ ( 1+ν
2 − κ(s))Γ (1 − ν)

×
∫ x

L

yp+c− 3
2 −βe

A
2 y−2β

M
κ(s), ν

2

(
Ay−2β

)
dy

}
. (A.4)

The integrals are calculated in closed form by using the integrals for the Whittaker
functions in Prudnikov et al. [21] pp. 39–40. This gives

∫ ∞

x

yp+c− 3
2 −βe

A
2 y−2β

W
κ(s), ν

2

(
Ay−2β

)
dy

= A
1−2c−2p

4|β| − 1
2

2|β|
Γ (1 − 1−p

2|β| )Γ (1 + 2c+p
2|β| )Γ (

s+ξ
ω

− 2c+p
2|β| )

Γ (
s+ξ
ω

+ 1)Γ (
s+ξ
ω

+ 1 − ν)

− A
1−ν

2 x−2β−1+pΓ (ν)

(2|β| − 1 + p)Γ (
s+ξ
ω

+ 1)
2F2

(
1 − 1−p

2|β| , 1 + s+ξ
ω

− ν

2 − 1−p
2|β| , 1 − ν

;Ax−2β

)

− A
1+ν

2 x2c+p−2βΓ (−ν)

(2|β| + 2c + p)Γ (
s+ξ
ω

+ 1 − ν)
2F2

(
1 + 2c+p

2|β| , 1 + s+ξ
ω

2 + 2c+p
2|β| , 1 + ν

;Ax−2β

)

for p <
2|β|(s+ξ)

ω
− 2c (this restriction is due to Γ ((s + ξ)/ω − (2c + p)/(2|β|)) in

the first term, since the Gamma function tends to infinity when its arguments are
negative integers), and

∫ x

L

yp+c− 3
2 −βe

A
2 y−2β

M
κ(s), ν

2

(
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= A
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for p > −2(c + |β|) if L = 0, and for all real p with L > 0.

Substituting these results into (A.4), along with 1+ν
2 − κ(s) = 1 + s+ξ

ω
, we ob-

tain for the action of the resolvent operator on the power function xp the explicit

expression that (Rsx
p) equals

x
1
2 −c+βe− A

2 x−2β

(μ + b)Γ (1 + ν)
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We investigate this expression as a function of the complex variable s. This function
has three series of poles. To recover the expectation (A.3), we need to invert the
Laplace transform by calculating the Bromwich contour integral on the right-hand
side of (A.3). We use the Cauchy residue theorem to reduce the Laplace inversion
integral to the sum over all the residues at the poles of the integrand. Two series of
poles lie along the negative part of the real axis and contribute non-zero residues to
the calculation of the contour integral by the Cauchy residue theorem (see Fig. A.1).
The third series of poles also lie along the negative part of the real axis but have
vanishing residues. The three series of poles and the corresponding residues are as
follows.

(a) The Gamma function Γ (
s+ξ
ω

− 2c+p
2|β| ) has simple poles at the points

s = sn = ω(
2c+p
2|β| − n) − ξ , n = 0,1,2, . . . The residues at these poles are cal-

culated using the well-known result for the residues of the Gamma function at
negative integers that

Res
z=−n

Γ (z) = (−1)n/n!, n = 0,1,2, . . . .

Calculating the residues at these poles produces the first sum in the expres-
sion (3.13).

(b) The second series of poles comes from the factor 1/W
κ(s), ν

2
(AL−2β). Recall that

the Whittaker function W
κ, ν

2
(AL−2β) has a series of zeros κn, n = 1,2, . . . , de-

scribed in Theorem 3.2 (see also Slater [23], p. 105). These zeros lead to the poles
of 1/W

κ(s), ν
2
(AL−2β) at s = sn such that κ(sn) = κn, n = 1,2, . . . Calculating

the residues at these poles produces the second sum in the expression (3.13).
(c) The Gamma function Γ (

s+ξ
ω

+ 1) has simple poles at s = sn = −ω(n + 1) − ξ ,
n = 0,1,2, . . . Calculating the residues at these poles, we find that each residue
has the factor (in this case κ(sn) = ν/2 + n + 1/2)

[Mν
2 +n+ 1

2 , ν
2
(AL−2β)

Wν
2 +n+ 1

2 , ν
2
(AL−2β)

Wν
2 +n+ 1

2 , ν
2

(
Ax−2β

)− Mν
2 +n+ 1

2 , ν
2

(
Ax−2β

)]
.

However, when k = ν
2 + n − 1

2 , n = 1,2, . . . , the Whittaker functions Mk, ν
2
(x)

and Wk, ν
2
(x) become linearly dependent and reduce to the generalized Laguerre

Fig. A.1 Integration contour
and singularities at the points
s = p(μ + b) − (b + ωn) and
{s|W

κ(s), ν
2
(AL−2β) = 0}
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polynomials (see Buchholz [8] p. 214). Thus, these factors with the Whittaker
functions vanish, and the contributions from these poles to the Laplace inversion
vanish.

Finally, the results for the limiting case L = 0 (CDS) are obtained by observing that
the ratio M

κ(s), ν
2
(AL−2β)/W

κ(s), ν
2
(AL−2β) tends to 0 in the limit L → 0. �

Appendix B: The case with μ + b < 0

The counterpart of the expression (3.13) for μ + b < 0 is

Ex

[
e− ∫ t

0 h(Xu)du1{TL>t}(Xt )
p
]= x

1
2 −c+βe

A
2 x−2β

∞∑

n=1

e−λnt cn Nn W
κn, ν

2

(
Ax−2β

)
,

where A, ξ , ν, ω are defined in (3.10), {κn, n = 1,2, . . . } = {κ|W
κ, ν

2
(AL−2β) = 0},

and Nn, λn, and cn are defined by

Nn =
√√
√√a2|β|Γ (1/2 + ν/2 − κn)Mκn, ν

2
(AL−2β)

Γ (1 + ν)[ d
dκ

W
κ, ν

2
(AL−2β)]|κ=κn

,

λn = −ω

(
1 − ν

2
− κn

)
+ ξ,

cn = 2Nn

a2

[
A

1−2p−2c
4|β| − 1

2 Γ (
2c+p
2|β| + 1)Γ (

p−1
2|β| + 1)

2|β|Γ (
2c+2p−1

4|β| + 3
2 − κn)

− A
ν+1

2 L2c−2β+p

2c + 2|β| + p

Γ (−ν)

Γ ( 1−ν
2 − κn)

2F2

(
2c+p
2|β| + 1, ν+1

2 + κn

ν + 1,
2c+p
2|β| + 2

;−AL−2β

)

− A
1−ν

2 Lp−2β−1

p + 2|β| − 1

Γ (ν)

Γ ( 1+ν
2 − κn)

2F2

(
p−1
2|β| + 1, 1−ν

2 + κn

1 − ν,
p−1
2|β| + 2

;−AL−2β

)]

.

The counterpart of the expression (3.14) for μ + b < 0 is

Ex

[
e− ∫ t

0 h(Xu)du1{TL>t}(Xt )
p
]

= A
1−p
2|β| x Γ

(
2c + p

2|β| + 1

) ∞∑

n=1

e(ω(1−ν−n)−ξ)t
(

1−p
2|β| )n−1

Γ (ν + n)
L

(ν)
n−1

(
Ax−2β

)
.

The proofs are available upon request. The proofs for the case with μ + b < 0 are
actually easier than for the case with μ + b > 0 presented in Appendix A, since the
function f (x) = xp is in the Hilbert space L2((L,∞),m) for μ + b < 0, and hence
one can write down the spectral expansion directly instead of inverting the Laplace
transform (of course, inverting the Laplace transform by applying the Cauchy residue
theorem leads to the same spectral expansion).
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