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Abstract

Frictions in the labor market are important for understanding the equity premium in
the financial market. We embed the Diamond-Mortensen-Pissarides search framework
into a dynamic stochastic general equilibrium model with recursive preferences. The
model produces realistic equity premium and stock market volatility, as well as a low
and stable interest rate. The equity premium is countercyclical, and forecastable with
labor market tightness, a pattern we confirm in the data. Intriguingly, three key in-
gredients (small profits, large job flows, and matching frictions) in the model combine
to give rise endogenously to rare disasters à la Rietz (1988) and Barro (2006).
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1 Introduction

We study equilibrium asset prices by embedding search frictions in the labor market into a

dynamic stochastic general equilibrium economy with recursive preferences.

A representative household pools incomes from its employed and unemployed workers,

and decides on optimal consumption and asset allocation. The unemployed workers search

for vacancies posted by a representative firm. The labor market is represented as a matching

function that takes vacancies and unemployed workers as inputs to produce the number of

new hires (filled vacancies). The rate at which a vacancy is filled decreases with the con-

gestion in the labor market (labor market tightness, defined as the ratio of the number of

vacancies over the number of unemployed workers). Deviating from Walrasian equilibrium,

matching frictions create rents to be divided between the firm and employed workers through

the wage rate, which is determined by the outcome of a generalized Nash bargaining process.

We report two major results. First, the search economy provides a coherent account of

aggregate asset prices. Quantitatively, the economy reproduces an equity premium of 5.70%

and an average stock market volatility of 10.83% per annum. Both moments are adjusted for

financial leverage, and are close to the moments in the data, 5.07% and 12.94%, respectively.

The equity premium is also countercyclical in the model. The vacancy-unemployment ratio

forecasts stock market excess returns with a significantly negative slope, a pattern we con-

firm in the data. In the model, the interest rate volatility is 1.34%, which is close to 1.87%

in the data. Finally, the model is also broadly consistent with business cycle moments for

aggregate quantities as well as labor market variables.

Second, the search economy gives rise endogenously to rare but deep disasters per Rietz

(1988) and Barro (2006). In the model’s simulated stationary distribution, the unemploy-

ment rate is positively skewed with a long right tail. The mean unemployment rate is 8.51%,

the median 7.30%, and the skewness 7.83. The 2.5 percentile is 5.87%, which is not far

from the median, but the 97.5 percentile is far away, 19.25%. Accordingly, output and con-

sumption are both negatively skewed with a long left tail. Applying the Barro and Ursúa

(2008) peak-to-trough measurement on the simulated data, we find that the consumption
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and GDP disasters in the model have the same average magnitude, about 20%, as in the

data. The consumption disaster probability is 3.08% in the model, which is close to 3.63% in

the data. The GDP disaster probability is 4.66%, which is somewhat high relative to 3.69%

in the data. However, both disaster probabilities in the data are within one cross-simulation

standard deviation from the disaster probabilities in the model.

From comparative statics, we find that three key ingredients (small profits, large job flows,

and matching frictions), when combined, are capable of producing disasters and a high equity

premium. First, we adopt a relatively high value of unemployment activities, implying realis-

tically small profits (output minus wages). Also, a high value of unemployment makes wages

inelastic, giving rise to operating leverage. In recessions, output falls, but wages do not fall as

much, causing profits to drop disproportionately more than output. As such, by dampening

the procyclical covariation of wages, wage inelasticity magnifies the procyclical covariation

(risk) of dividends, causing the equity premium to rise. Finally, the impact of the inelastic

wages is stronger in worse economic conditions, when the profits are even smaller (because

of lower labor productivity). This time-varying operating leverage amplifies the risk and risk

premium, making the equity premium and the stock market volatility countercyclical.

Second, job flows are large in the model, as in the data. The labor market is character-

ized by large job flows in and out of employment. In particular, whereas the rate of capital

depreciation is around 1% per month (e.g., Cooper and Haltiwanger (2006)), the worker

separation rate is 5% in the data (e.g., Davis, Faberman, Haltiwanger, and Rucker (2010)).

As such, contrary to swings in investment that have little impact on the disproportionately

large capital stock, cyclical variations in job flows cause large fluctuations in aggregate em-

ployment. Because capital (not investment per se) enters the production function, volatile

but small investment flows have little impact on the output volatility. In contrast, the large

job flows out of employment put a tremendous strain on the labor market to put unemployed

workers back to work. Any frictions that disrupt this process in the labor market have a ma-

jor impact on the macroeconomy. Consequently, economies with labor market frictions can

be substantially riskier than baseline production economies without labor market frictions.

Third, matching frictions induce downward rigidity in the marginal costs of hiring. If
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one side of the labor market becomes more abundant than the other side, it will be increas-

ingly difficult for the abundant side to meet and trade with the other side (which becomes

increasingly scarce). In particular, expansions are periods in which many vacancies compete

for a small pool of unemployed workers. The entry of an additional vacancy can cause a pro-

nounced drop in the probability of a given vacancy being filled. This effect raises the marginal

costs of hiring, slowing down job creation flows and making expansions more gradual.

Conversely, recessions are periods in which many unemployed workers compete for a small

pool of vacancies. Filling a vacancy occurs quickly, and the marginal costs of hiring are lower.

However, the congestion in the labor market affects unemployed workers, rather than vacan-

cies in recessions. The entry of a new vacancy has little impact on the probability of a given

vacancy being filled. As such, although the marginal costs of hiring can rise rapidly in expan-

sions, the marginal costs decline only slowly in recessions. This downward rigidity is further

reinforced by fixed matching costs per Mortensen and Nagypál (2007) and Pissarides (2009).

By putting a constant component into the marginal costs of hiring, the fixed costs restrict

the marginal costs from declining fast in recessions, further hampering job creation flows.

To see how the three key ingredients combine to endogenize disasters, consider a large

negative shock hitting the economy. The profits, which are small to begin with, become even

smaller as productivity falls. Also, wages are inelastic, staying at a relatively high level, re-

ducing the small profits still further. To make a bad situation worse, the marginal costs of

hiring run into downward rigidity, an inherent attribute of the matching process, which is

further buttressed by fixed matching costs. As the marginal costs of hiring fail to decline to

counteract the impact of shrinking profits, the incentives of hiring are suppressed, and job cre-

ation flows stifled. All the while, jobs continue to be destroyed at a high rate of 5% per month.

Consequently, aggregate employment falls off a cliff, giving rise endogenously to disasters.

Our work integrates the macro-labor literature with production-based asset pricing. Di-

amond (1982), Mortensen (1982), and Pissarides (1985) lay the theoretical foundations for

the search model. Merz (1995) and Andolfatto (1996) embed search frictions into the real

business cycle framework. Shimer (2005) conducts an important quantitative analysis, which

shows that the unemployment volatility in the baseline search model is too low relative to that
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in the data. Shimer (2004) and Hall (2005) use sticky wages, Hagedorn and Manovskii (2008)

use (extremely) small profits, and Mortensen and Nagypál (2007) and Pissarides (2009) use

fixed matching costs to address the unemployment volatility puzzle. To the best of our knowl-

edge, our work is the first to connect the labor search literature with equilibrium asset prices.

Armed with a globally nonlinear projection algorithm, we also demonstrate significant nonlin-

earities in the baseline search model. In contrast, nonlinear dynamics have been ignored so far

in the search literature, in which models are routinely solved with log-linearization methods.

It is well known that explaining the equity premium in general equilibrium production

economies is extremely difficult.1 A notable exception is Gourio (2012a), who provides a

coherent account of asset prices and business cycles, by embedding the Rietz (1988) and

Barro (2006) disaster framework into a production economy. Gourio (2012b) also builds on

the disaster framework to study corporate credit spreads. Our work adds to the disaster

literature by providing an endogenous disaster mechanism. Most, if not all, existing disaster

studies specify disasters exogenously on aggregate total factor productivity. However, while

there exists some evidence on consumption and output disasters, direct evidence on total

factor productivity disasters seems scarce. In our model, log productivity follows a standard

autoregressive process with homoscedastic shocks. As such, our work helps reconcile the

exogenous disaster models with the lack of direct evidence on productivity disasters.2

1Rouwenhorst (1995) shows that the standard real business cycle model fails to explain the equity
premium because of consumption smoothing. With internal habit preferences, Jermann (1998) and Boldrin,
Christiano, and Fisher (2001) use capital adjustment costs and cross-sector immobility, respectively, to re-
strict consumption smoothing to explain the equity premium. However, both models struggle with excessively
high interest rate volatilities. Using recursive preferences to curb interest rate volatility, Tallarini (2000) and
Kaltenbrunner and Lochstoer (2010) show that baseline production economies without labor market frictions
can explain the Sharpe ratio, but still fail to match the equity premium and the stock market volatility.

2Danthine and Donaldson (2002) show that the priority status of wages magnifies the risk of dividends.
However, their benchmark model is an incomplete markets framework with uninsurable distribution risk
(low frequency variations in income shares). Without the distribution risk, their model only produces an
equity premium of about 1% per annum. Uhlig (2007) shows that wage rigidity helps explain the Sharpe
ratio and the interest rate volatility in an external habit model, but that the equity premium and the
stock market volatility are close to zero. Gourio (2007) shows that operating leverage derived from labor
contracting helps explain the cross-section of expected returns, but does not study aggregate asset prices.
Favilukis and Lin (2012) quantify the role of infrequent wage renegotiations in an equilibrium asset pricing
model with long run productivity risk and labor adjustment costs. Instead of specifying the wage rule
exogenously, we differ from the prior studies by using the search framework to derive equilibrium wages.
Because dividends equal output minus wages minus total vacancy costs (analogous to investment), providing
a microfoundation for equilibrium wages makes the dividends truly endogenous in a production economy.
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Section 2 constructs the model. Section 3 describes the calibration and solution. Sections

4 and 5 present quantitative results on asset prices and disasters, respectively. Section 6 con-

cludes. Proofs, computational details, and supplementary results are in the Online Appendix.

2 The Model

We embed the standard Diamond-Mortensen-Pissarides (DMP) search model of the labor

market into a dynamic stochastic general equilibrium economy with recursive preferences.

2.1 Search and Matching

The model is populated by a representative household and a representative firm that uses

labor as the single productive input. As in Merz (1995), the household has perfect consump-

tion insurance. There exists a continuum (of mass one) of members who are, at any point in

time, either employed or unemployed. The fractions of employed and unemployed workers

are representative of the population at large. The household pools the income of all the

members together before choosing per capita consumption and asset holdings.

The representative firm posts a number of job vacancies, Vt, to attract unemployed work-

ers, Ut. Vacancies are filled via a constant returns to scale matching function, specified as:

G(Ut, Vt) =
UtVt

(U ι
t + V ι

t )
1/ι
, (1)

in which ι > 0. This matching function, originated from Den Haan, Ramey, and Watson

(2000), has the desirable property that matching probabilities fall between zero and one.

In particular, define θt ≡ Vt/Ut as the vacancy-unemployment (V/U) ratio. The proba-

bility for an unemployed worker to find a job per unit of time (the job finding rate), f(θt), is:

f(θt) ≡ G(Ut, Vt)

Ut
=

1(
1 + θ−ιt

)1/ι . (2)

The probability for a vacancy to be filled per unit of time (the vacancy filling rate), q(θt), is:

q(θt) ≡ G(Ut, Vt)

Vt
=

1

(1 + θιt)
1/ι
. (3)

5



It follows that f(θt) = θtq(θt) and q′(θt) < 0, meaning that an increase in the scarcity of

unemployed workers relative to vacancies makes it harder to fill a vacancy. As such, θt is labor

market tightness from the firm’s perspective, and 1/q(θt) is the average duration of vacancies.

The representative firm incurs costs in posting vacancies. Following Mortensen and

Nagypál (2007) and Pissarides (2009), we assume that the unit costs per vacancy, denoted

κt, contain two components, the proportional costs, κ0, and the fixed costs, κ1. Formally,

κt ≡ κ0 + κ1q(θt), (4)

in which κ0, κ1 > 0. The proportional costs are standard in the search literature. The

fixed costs aim to capture matching costs, such as training, interviewing, negotiation, and

administrative setup costs of adding a worker to the payroll, costs paid after a hired worker

arrives but before wage bargaining takes place. The marginal costs of hiring arising from the

proportional costs, κ0/q(θt), increase with the mean duration of vacancies, 1/q(θt). In con-

trast, the marginal costs from the fixed costs are “fixed” at κ1 (independent of the duration

of vacancies). The total marginal costs of hiring are given by κ0/q(θt) + κ1. In expansions,

the labor market is tighter for the firm (θt is higher), meaning that the vacancy filling rate,

q(θt), is lower. As such, the marginal costs of hiring are procyclical.

Jobs are destroyed at a constant rate of s per period. Employment, Nt, evolves as:

Nt+1 = (1− s)Nt + q(θt)Vt, (5)

in which q(θt)Vt is the number of new hires. Population is normalized to be unity, Ut+Nt = 1.

As such, Nt and Ut are also the rates of employment and unemployment, respectively.

2.2 The Representative Firm

The firm takes aggregate labor productivity, Xt, as given. We specify xt ≡ log(Xt) as follows:

xt+1 = ρxt + σεt+1, (6)

in which ρ ∈ (0, 1) is the persistence, σ > 0 is the conditional volatility, and εt+1 is an inde-

pendently and identically distributed (i.i.d.) standard normal shock. The firm uses labor to
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produce output, Yt, with a constant returns to scale production technology,

Yt = XtNt. (7)

To keep the model parsimonious so as to focus on the impact of labor market frictions

on asset prices, we abstract from physical capital in the production function. The absence

of capital is unlikely to be important for our quantitative results. As noted, small (albeit

volatile) investment flows have little impact on fluctuations in aggregate capital, which is

largely fixed at business cycle frequencies. As a testimony to the quasi-fixity of capital, one

has to assume an excessively large volatility for exogenous productivity shocks to match

the output growth volatility in a baseline production economy, (e.g., Kaltenbrunner and

Lochstoer (2010)). As such, the majority of cyclical variations in aggregate output is driven

by movements in aggregate employment (e.g., Cogley and Nason (1995)). In addition, hiring

decisions are mostly driven by movements in the marginal product of labor. Because capi-

tal, not investment, enters the marginal product of labor, volatile but small investment flows

have little impact on the marginal product of labor (and hiring decisions). As such, it is

not surprising that important quantitative studies in the search literature typically abstract

from capital (e.g., Shimer (2005); Mortensen and Nagypál (2007); Pissarides (2009)).

The dividends to the firm’s shareholders are given by:

Dt = XtNt −WtNt − κtVt, (8)

in which Wt is the wage rate (to be determined later in Section 2.4). LetMt+�t be the repre-

sentative household’s stochastic discount factor from period t to t+�t. Taking the matching

probability, q(θt), and the wage rate, Wt, as given, the firm posts an optimal number of job

vacancies to maximize the cum-dividend market value of equity, denoted St:

St ≡ max
{Vt+�t,Nt+�t+1}∞�t=0

Et

[ ∞∑
�t=0

Mt+�t [Xt+�tNt+�t −Wt+�tNt+�t − κt+�tVt+�t]

]
, (9)

subject to equation (5) and a nonnegativity constraint on vacancies:

Vt ≥ 0. (10)
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Because q(θt) > 0, this constraint is equivalent to q(θt)Vt ≥ 0. As such, the only source of

job destruction in the model is the exogenous separation of employed workers from the firm.3

Let λt denote the multiplier on the constraint q(θt)Vt ≥ 0. From the first-order conditions

with respect to Vt and Nt+1, we obtain the intertemporal job creation condition:

κ0
q(θt)

+ κ1 − λt = Et

[
Mt+1

[
Xt+1 −Wt+1 + (1− s)

[
κ0

q(θt+1)
+ κ1 − λt+1

]]]
. (11)

Intuitively, the marginal costs of hiring at time t (with the V -constraint accounted for) equal

the marginal value of employment to the firm, which in turn equals the marginal benefit of

hiring at period t+1, discounted to t with the stochastic discount factor,Mt+1. The marginal

benefit at t+1 includes the marginal product of labor, Xt+1, net of the wage rate, Wt+1, plus

the marginal value of employment, which equals the marginal costs of hiring at t+ 1, net of

separation. Finally, the optimal vacancy policy also satisfies the Kuhn-Tucker conditions:

q(θt)Vt ≥ 0, λt ≥ 0, and λtq(θt)Vt = 0. (12)

Because St is the cum-dividend equity value, we define the stock return as Rt+1 ≡
St+1/(St−Dt). The constant returns to scale assumption implies (see the Online Appendix):

Rt+1 =
Xt+1 −Wt+1 + (1− s) [κ0/q(θt+1) + κ1 − λt+1]

κ0/q(θt) + κ1 − λt
. (13)

Intuitively, the stock return is the tradeoff between the marginal benefit of hiring accrued over

period t + 1 and the marginal costs of hiring incurred over period t, as in Cochrane (1991).

3The nonnegativity constraint on vacancies has been ignored so far in the labor search literature, in which
models are traditionally solved via log-linearizationmethods. Using a globally nonlinear projection algorithm,
we find that the nonnegativity constraint is occasionally binding in the simulations from the search model,
especially with small profits. Because a negative vacancy does not make economic sense, we feel compelled
to impose the nonnegativity constraint to solve the model accurately, albeit with higher computational costs.
However, the constraint is not a central ingredient of the model. In simulations based on our benchmark
calibration, the constraint only binds for 0.013% of the time, which is extremely rare. (The fact that vacancies
are all positive in a finite sample such as the U.S. economy does not mean that the constraint is irrelevant if
one simulates the economy for, say, one million months.) In addition, the zero-vacancy observations are more
the effect than the cause. Small profits and large job flows are the causes. In models with large profits or small
job flows, the constraint never binds. As such, the constraint per se is not crucial for our quantitative results.
Finally, relaxing this constraint with endogenous job destruction is likely to strengthen, rather than weaken
our results. Endogenous job destruction should rise during recessions, amplifying the disaster dynamics.
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2.3 The Representative Household

The household maximizes utility, denoted Jt, over consumption using recursive preferences

(e.g., Kreps and Porteus (1978); Epstein and Zin (1989)) by trading risky shares issued by

the representative firm and a risk-free bond. The recursive utility function is given by:

Jt =

[
(1− β)C

1− 1
ψ

t + β
(
Et
[
J1−γ
t+1

]) 1−1/ψ
1−γ

] 1
1−1/ψ

, (14)

in which Ct is consumption, β is time discount factor, ψ is the elasticity of intertemporal

substitution, and γ is relative risk aversion. This utility function separates ψ from γ, allowing

the model to produce a high equity premium and a low interest rate volatility simultaneously.

The household’s first-order condition implies the fundamental equation of asset pricing:

1 = Et[Mt+1Rt+1], (15)

in which the stochastic discount factor, Mt+1, is given by:

Mt+1 ≡ β

(
Ct+1

Ct

)− 1
ψ

(
Jt+1

Et[J
1−γ
t+1 ]

1
1−γ

) 1
ψ
−γ

. (16)

Finally, the risk-free rate is given by Rf
t+1 = 1/Et[Mt+1].

2.4 Equilibrium Wage

The wage rate is determined endogenously by applying the sharing rule per the outcome

of a generalized Nash bargaining process between the employed workers and the firm. Let

η ∈ (0, 1) be the workers’ relative bargaining weight and b the workers’ value of unemploy-

ment activities. The equilibrium wage rate is given by (see the Online Appendix):

Wt = η (Xt + κtθt) + (1− η)b. (17)

The wage rate is increasing in labor productivity, Xt, and in the total vacancy costs per un-

employed worker, κtθt = κtVt/Ut. Intuitively, the more productive the workers are, and the

more costly for the firm to fill a vacancy, the higher the wage rate is for employed workers.

Also, the value of unemployment activities, b, and the workers’ bargaining weight, η, affect
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the wage elasticity to labor productivity. The lower η is, and the higher b is, the more the

wage rate is tied with the constant b, inducing a lower wage elasticity to productivity.

2.5 Competitive Equilibrium

In equilibrium, the financial markets clear. The risk-free asset is in zero net supply, and the

household holds all the shares of the representative firm. As such, the equilibrium return on

wealth equals the stock return, and the household’s financial wealth equals the cum-dividend

equity value of the firm. The goods market clearing condition is then given by:

Ct + κtVt = XtNt. (18)

The competitive equilibrium in the search economy consists of vacancy posting, V �
t ≥ 0;

multiplier, λ�t ≥ 0; consumption, C�
t ; and indirect utility, J�t ; such that (i) V �

t and λ�t satisfy

the intertemporal job creation condition (11) and the Kuhn-Tucker conditions (12), while

taking the stochastic discount factor in equation (16) and the wage equation (17) as given; (ii)

C�
t and J

�
t satisfy the intertemporal consumption-portfolio choice condition (15), in which the

stock return is given by equation (13); and (iii) the goods market clears as in equation (18).

3 Calibration and Computation

We calibrate the model in Section 3.1 and discuss our global solution algorithm in Section 3.2.

3.1 Calibration

Table 1 lists the parameter values in our benchmark monthly calibration. For the five pref-

erence and technology parameters, our general strategy is to use values that are (relatively)

standard in the literature. Following Bansal and Yaron (2004), we set the risk aversion, γ,

to be ten, and the elasticity of intertemporal substitution, ψ, to be 1.5. Following Gertler

and Trigari (2009), we set the time discount factor, β, to be 0.991/3, the persistence of the

(log) aggregate productivity, ρ, to be 0.951/3, and its conditional volatility, σ, to be 0.0077.

In particular, the σ value is chosen so that the volatilities of consumption growth and output

growth in the model are largely in line with those in the data.
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Table 1 : Parameter Values in the Benchmark Monthly Calibration

Notation Parameter Value

β Time discount factor 0.991/3

γ Relative risk aversion 10
ψ The elasticity of intertemporal substitution 1.5
ρ Aggregate productivity persistence 0.983
σ Conditional volatility of productivity shocks 0.0077

η Workers’ bargaining weight 0.052
b The value of unemployment activities 0.85
s Job separation rate 0.05
ι Elasticity of the matching function 1.25
κ0 The proportional costs of vacancy posting 0.6
κ1 The fixed costs of vacancy posting 0.4

For the labor market parameters, our general calibration strategy is to use existing evi-

dence and quantitative studies (as much as possible) to restrict their values. For the param-

eters whose values are important in driving our quantitative results, we conduct extensive

comparative statics to evaluate their impact and to understand the underlying mechanism. It

is worthwhile pointing out that our calibration strategy differs from the standard practice in

the search literature that relies only on steady state relations. In our highly nonlinear model,

steady state restrictions hold very poorly in the model’s simulations. This nonlinearity means

that matching a given moment precisely in simulations is virtually impossible. As such, we

exercise care in reporting a wide range of model moments to compare with data moments.

Our calibration of the workers’ bargaining weight, η, and the value of unemployment

activities, b, is in the same spirit as in Hagedorn and Manovskii (2008). Hagedorn and

Manovskii calibrate η to be 0.052 to match the wage elasticity to labor productivity, which

is estimated to be 0.49 in their sample. We set η to be the same value, which implies a wage

elasticity of 0.58 in the model. This η value is somewhat conservative in that we could have

used a lower value to generate a lower wage elasticity than that in the benchmark calibration.

The calibration of b is more controversial in the macro-labor literature. Shimer (2005)

pins down b = 0.4 by assuming that the only benefit for an unemployed worker is government

unemployment insurance. However, Mulligan (2012) estimates that the ratio of the average
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monthly overall safety net benefit over the median monthly earnings of heads and spouses

can be as high as 0.70.4 Hagedorn and Manovskii (2008) argue that in a perfectly competitive

labor market, b should equal the value of employment. The value of unemployment activities

measures not only unemployment insurance, but also the total value of home production,

self-employment, disutility of work, and leisure. In the model, the average marginal product

of labor is unity, to which b should be close. We set b to be 0.85, which is the same as in

Rudanko (2011). This value of b is not as extreme as 0.955 in Hagedorn and Manovskii.

Three remarks on the b calibration are in order. First, in contrast to Hagedorn and

Manovskii (2008), in which profits are tiny, our value of b = 0.85 implies a realistic magni-

tude of profits. The average profits-to-GDP ratio in the model is 9.08%, which is close to

9.36% in the data (see Section 4.3 for detailed measurement). Second, the interpretation of

b is broader than the value of unemployment activities per se. In particular, a portion of b

can be due to (flow) fixed costs of production. Consider an alternative production function,

Yt = (Xt − h)Nt, in which h > 0 is the fixed costs parameter. In the Online Appendix,

we report that this slightly modified model, calibrated with b = 0.75 and h = 0.10, retains

virtually all the quantitative results in our benchmark model (with b = 0.85 and h = 0).5

Third, more generally, we view the high-b calibration only as a parsimonious modeling

device to obtain small profits and inelastic wages, which are important to match labor mar-

ket volatilities. We have nothing new to say about labor market volatilities. Rather, our

key insight is that conditional on realistic labor market dynamics, a search model also has

important implications for asset prices (and disasters). The parsimony with the baseline

search model is valuable, both conceptually as a first stab in embedding the DMP structure

into an equilibrium asset pricing framework, and pragmatically as a first step in solving the

resulting model nonlinearly (see Section 3.2 for our algorithm). Other specifications with

4Mulligan (2012, p. 29) reports the median monthly earnings of heads and spouses to be $3,148, payroll
taxes $482, and the overall net monthly safety net benefit $1,560 on average during fiscal year 2007 (and is
$300 per month greater in 2009 and 2010). The (replacement) ratio is then (1, 560+300)/(3, 148−482) = 0.70.

5Equation (18) implicitly assumes that the value of unemployment activities, b, does not enter the resource
constraint in equation (18). The part of b that is due to government unemployment benefits can be taken out
of the resource constraint by assuming that the government finances the unemployment benefits via taxing
the representative household. The part of b that is derived from, for example, home production does not enter
the resource constraint because the output from home production is not marketable. Finally, the part of b due
to the fixed costs of production does enter the resource constraint by reducing the aggregate output by hNt.
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small profits and inelastic wages are likely to have similar implications. However, to what

extent this statement is true, quantitatively, is left for future research.

We set the job separation rate, s, to 5%. This value, which is also used in Andolfatto

(1996), is estimated in Davis, Faberman, Haltiwanger, and Rucker (2010, Table 5.4), and is

within the range of estimates from Davis, Faberman, and Haltiwanger (2006). This estimate

is higher than 3.7% from the publicly available Job Openings and Labor Turnover Survey

(JOLTS). As pointed out by Davis, Faberman, Haltiwanger, and Rucker, the JOLTS sam-

ple overweights relatively stable establishments with low rates of hires and separations and

underweights establishments with rapid growth or contraction. For the elasticity parameter

in the matching function, ι, we set it to be 1.25, which is close to the value in Den Haan,

Ramey, and Watson (2000). We also report comparative statics by varying its value to 0.9.

To pin down the two parameters in the vacancy costs, κ0 and κ1, we first experiment so

that the unit costs of vacancy posting are on average around 0.8 in the model’s simulations.

This level of the average unit costs is necessary for the model to reproduce a realistic

unemployment rate. The average unemployment rate in the United States over the 1929–

2010 period is about 7%. However, flows in and out of nonparticipation in the labor force, as

well as discouraged workers not accounted for in the pool of individuals seeking employment,

suggest that the unemployment rate should be higher. In the simulations with the benchmark

calibration, the mean unemployment rate is 8.51% (and the median is 7.3%). The evidence

on the relative weights of the proportional costs and the fixed costs out of the total unit costs

of vacancy seems scarce. To pin down κ0 and κ1 separately, we set the weight of the fixed

costs to be 25%, meaning κ0 = 0.6 and κ1 = 0.4. We also report comparative statics in which

the weight of the fixed costs is zero, or the unit costs of vacancy are constant, around 0.8.

Is the magnitude of the vacancy (hiring) costs in the model empirically plausible? The

model implies that the marginal costs of vacancy posting in terms of labor productivity (out-

put per worker) equal 0.815, which is the average of κ0+ κ1q(θt) in simulations (the average

labor productivity is unity). The marginal costs of hiring are on average 1.59, which is the av-

erage of κ0/q(θt)+κ1. Merz and Yashiv (2007) estimate the marginal costs of hiring to be 1.48

times the average output per worker with a standard error of 0.57. As such, 1.59 seems empir-
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ically plausible. For the total costs of vacancy, κtVt, the average in the model’s simulations is

about 0.73% of annual wages. This magnitude does not appear large. In particular, the esti-

mated labor adjustment costs in Bloom (2009) imply limited hiring and firing costs of “about

1.8% of annual wages” and high fixed costs of “around 2.1% of annual revenue (p. 663).”

3.2 Computation

Although analytically transparent, solving the model numerically is quite challenging.

First, the search economy is not Pareto optimal. The competitive equilibrium does not

correspond to the social planner’s solution. Intuitively, the firm in the decentralized economy

does not take into account the congestion effect of posting a new vacancy on the labor market

when maximizing the equity value, whereas the social planner does when maximizing social

welfare. As such, we must solve for the competitive equilibrium from the optimality condi-

tions directly. Unlike value function iterations, algorithms that approximate the solution to

optimality conditions often do not have convenient convergence properties.

Second, because of the occasionally binding constraint on vacancy, standard perturbation

methods cannot be used. As such, we solve for the competitive equilibrium using a globally

nonlinear projection algorithm, while applying the Christiano and Fisher (2000) idea of pa-

rameterized expectations to handle the vacancy constraint. Third, because of the model’s

nonlinearity and our focus on nonlinearity-sensitive asset pricing and disaster moments, we

must solve the model on a large, fine grid to ensure accuracy. We must also apply homotopy

to visit the parameter space in which the model exhibits strong nonlinearity. Because many

economically interesting parameterizations imply strong nonlinearity, we can only update

the parameter values very slowly to ensure the convergence of the projection algorithm.

The state space of the model consists of employment and productivity, (Nt, xt). The

goal is to solve for the optimal vacancy function: V �
t = V (Nt, xt), the multiplier function:
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λ�t = λ(Nt, xt), and an indirect utility function: J�t = J(Nt, xt) from two functional equations:

J(Nt, xt) =

[
(1− β)C(Nt, xt)

1− 1
ψ + β

(
Et
[
J(Nt+1, xt+1)

1−γ]) 1−1/ψ
1−γ

] 1
1−1/ψ

(19)

κ0
q(θt)

+ κ1 − λ(Nt, xt) = Et

[
Mt+1

[
Xt+1 −Wt+1 + (1− s)

[
κ0

q(θt+1)
+ κ1 − λ(Nt+1, xt+1)

]]]
.

(20)

V (Nt, xt) and λ(Nt, xt) must also satisfy the Kuhn-Tucker conditions (12).

The standard projection method would approximate V (Nt, xt) and λ(Nt, xt) to solve

equations (19) and (20), while obeying the Kuhn-Tucker conditions. With the vacancy con-

straint, the vacancy and multiplier functions are not smooth, making the standard projection

method tricky and cumbersome to apply. As such, we adapt the Christiano and Fisher (2000)

parameterized expectations method by approximating the right-hand side of equation (20):

Et ≡ E(Nt, xt) = Et

[
Mt+1

[
Xt+1 −Wt+1 + (1− s)

[
κ0

q(θt+1)
+ κ1 − λ(Nt+1, xt+1)

]]]
. (21)

We then exploit a convenient mapping from the conditional expectation function to policy

and multiplier functions, so as to eliminate the need to parameterize the multiplier function

separately. After obtaining the parameterized Et, we first calculate q̃(θt) = κ0/ (Et − κ1) .

If q̃(θt) < 1, the vacancy constraint is not binding, we set λt = 0 and q(θt) = q̃(θt). We

then solve θt = q−1(q̃(θt)), in which q−1(·) is the inverse function of q(·) in equation (3), and

Vt = θt(1−Nt). If q̃(θt) ≥ 1, the constraint is binding, we set Vt = 0, θt = 0, q(θt) = 1, and

λt = κ0 + κ1 − Et. The Online Appendix contains additional computational details.

4 Asset Prices

We present basic business cycle and asset pricing moments in Section 4.1. In Section 4.2,

we examine time-varying risk premiums by using labor market tightness to forecast stock

market excess returns. We study the model’s implications for dividends and profits in Sec-

tion 4.3. To illustrate intuition, Section 4.4 reports several comparative statics. Finally, we

study the model’s implications for long run risks and uncertainty shocks in Section 4.5.
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4.1 Basic Business Cycle and Financial Moments

Panel A of Table 2 reports the standard deviation and autocorrelations of log consump-

tion growth and log output growth, as well as unconditional financial moments in the data.

Consumption is annual real personal consumption expenditures, and output is annual real

gross domestic product from 1929 to 2010 from the National Income and Product Accounts

(NIPA) at Bureau of Economic Analysis. The annual consumption growth in the data has

a volatility of 3.04%, and a first-order autocorrelation of 0.38. The autocorrelation drops

to 0.08 at the two-year horizon, and turns negative, −0.21, at the three-year horizon. The

annual output growth has a volatility of 4.93% and a high first-order autocorrelation of 0.54.

The autocorrelation drops to 0.18 at the two-year horizon, and turns negative afterward:

−0.18 at the three-year horizon and −0.23 at the five-year horizon.

We obtain monthly series of the value-weighted market returns including all NYSE, Amex,

and Nasdaq stocks, one-month Treasury bill rates, and inflation rates (the rates of change in

Consumer Price Index) from Center for Research in Security Prices (CRSP). The sample is

from January 1926 to December 2010 (1,020 months). The mean of real interest rates (one-

month Treasury bill rates minus inflation rates) is 0.59% per annum, and the annualized

volatility is 1.87%. The equity premium (the average of the value-weighted market returns

in excess of one-month Treasury bill rates) in the 1926–2010 sample is 7.45% per annum.

Because we do not model financial leverage, we adjust the equity premium in the data for

leverage before matching with the equity premium from the model. Frank and Goyal (2008)

report that the aggregate market leverage ratio of U.S. corporations is stable around 0.32.

As such, we calculate the leverage-adjusted equity premium as (1 − 0.32)× 7.45% = 5.07%

per annum. The annualized volatility of the market returns in excess of inflation rates is

18.95%. Adjusting for leverage (taking the leverage-weighted average of real market returns

and real interest rates) yields an annualized volatility of 12.94%.

Panel B of Table 2 reports the model moments. To reach the model’s stationary dis-

tribution, we always start at the initial condition of zero for log productivity and 0.90 for

employment, and simulate the economy for 6,000 months. From the stationary distribution,

we repeatedly simulate 1,000 artificial samples, each with 1,020 months. On each sample, we
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Table 2 : Basic Business Cycle and Financial Moments

In Panel A, consumption is annual real personal consumption expenditures (series
PCECCA), and output is annual real gross domestic product (series GDPCA) from 1929 to
2010 (82 annual observations) from NIPA (Table 1.1.6) at Bureau of Economic Analysis. σC

is the volatility of log consumption growth, and σY is the volatility of log output growth.
Both volatilities are in percent. ρC(τ) and ρY (τ), for τ = 1, 2, 3, and 5, are the τ -th order
autocorrelations of log consumption growth and log output growth, respectively. We obtain
monthly series from January 1926 to December 2010 (1,020 monthly observations) for the
value-weighted market index returns including dividends, one-month Treasury bill rates,
and the rates of change in Consumer Price Index (inflation rates) from CRSP. E[R − Rf ]
is the average (in annualized percent) of the value-weighted market returns in excess of
the one-month Treasury bill rates, adjusted for the long-term market leverage rate of 0.32
reported by Frank and Goyal (2008). (The leverage-adjusted average E[R − Rf ] is the
unadjusted average times 0.68.) E[Rf ] and σR

f
are the mean and volatility, both of which

are in annualized percent, of real interest rates, defined as the one-month Treasury bill rates
in excess of the inflation rates. σR is the volatility (in annualized percent) of the leverage-
weighted average of the value-weighted market returns in excess of the inflation rates and the
real interest rates. In Panel B, we simulate 1,000 artificial samples, each of which has 1,020
monthly observations, from the model in Section 2. On each artificial sample, we calculate
the mean market excess return, E[R − Rf ], the volatility of the market return, σR, as well
as the mean, E[Rf ], and volatility, σR

f
, of the real interest rate. All these moments are in

annualized percent. We time-aggregate the first 984 monthly observations of consumption
and output into 82 annual observations in each sample, and calculate the annual volatilities
and autocorrelations of log consumption growth and log output growth. We report the mean
and the 5 and 95 percentiles across the 1,000 simulations. The p-values are the percentages
with which a given model moment is larger than its data moment.

Panel A: Data Panel B: Model

Mean 5% 95% p-value

σC 3.04 3.63 1.92 8.12 0.46
ρC(1) 0.38 0.18 −0.04 0.46 0.10
ρC(2) 0.08 −0.14 −0.35 0.09 0.06
ρC(3) −0.21 −0.13 −0.35 0.10 0.73
ρC(5) 0.06 −0.07 −0.28 0.14 0.14

σY 4.93 4.13 2.47 8.39 0.17
ρY (1) 0.54 0.19 −0.03 0.45 0.03
ρY (2) 0.18 −0.13 −0.33 0.08 0.02
ρY (3) −0.18 −0.12 −0.33 0.09 0.68
ρY (5) −0.23 −0.08 −0.28 0.14 0.89

E[R− Rf ] 5.07 5.70 4.87 6.52 0.89
E[Rf ] 0.59 2.90 2.50 3.18 1.00
σR 12.94 10.83 9.94 11.82 0.00

σR
f

1.87 1.34 0.80 2.26 0.11
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calculate the annualized monthly averages of the equity premium and the real interest rate,

as well as the annualized monthly volatilities of the market returns and the real interest rate.

We also time-aggregate the first 984 monthly observations of consumption and output into

82 annual observations. (We add up 12 monthly observations within a given year, and treat

the sum as the year’s annual observation.) For each data moment, we report the average as

well as the 5 and 95 percentiles across the 1,000 simulations. The p-values are the frequencies

with which a given model moment is larger than its data counterpart.

The model predicts a consumption growth volatility of 3.63% per annum, which is some-

what higher than 3.04% in the data. This data moment lies within the 90% confidence

interval of the model’s bootstrapped distribution with a bootstrapped p-value of 0.46. The

model also implies a positive first-order autocorrelation of 0.18, but is lower than 0.38 in

the data. At longer horizons, consumption growth in the model are all negatively autocorre-

lated. All the autocorrelations in the data are within 90% confidence interval of the model.

The output growth volatility implied by the model is 4.13% per annum, which is somewhat

lower than 4.93% in the data. Both the first- and the second-order autocorrelations in the

data are outside the 90% confidence interval of the model. However, at longer horizons, the

autocorrelations are negative in the model, consistent with the data.

The model is also broadly consistent with the business cycle moments of the labor mar-

ket. The volatilities of unemployment and vacancies in the model are close to those in the

data. However, the volatility of the vacancy-unemployment ratio in the model is somewhat

lower than that in the data. Finally, the model also reproduces a Beveridge curve with a

large negative correlation between unemployment and vacancies (see the Online Appendix).

The model seems to perform well in matching financial moments. The equity premium is

5.70% per annum, which is not far from the leverage-adjusted equity premium of 5.07% in the

data. This data moment lies within the 90% confidence interval of the model’s bootstrapped

distribution. The volatility of the stock market return in the model is 10.83% per annum,

which is close to the leverage-adjusted market volatility of 12.94% in the data. The volatility

of the interest rate in the model is 1.34%, close to 1.87% in the data. The model implies

an average interest rate of 2.90% per annum, which is somewhat higher than 0.59% in the
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data. Overall, the model’s fit of the financial moments, especially the stock market volatility,

seems noteworthy. As shown in Tallarini (2000) and Kaltenbrunner and Lochstoer (2010),

although successful in matching the market Sharpe ratio, baseline production economies with

recursive preferences struggle to reproduce a high stock market volatility.

4.2 Time-varying Risk Premiums

A large literature in finance shows that the equity premium is time-varying (countercyclical)

in the data (e.g., Lettau and Ludvigson (2001)). In the labor market, vacancies are procycli-

cal, and unemployment is countercyclical, meaning that the vacancy-unemployment ratio is

strongly procyclical (e.g., Shimer (2005)). As such, the ratio should forecast stock market

excess returns with a negative slope at business cycle frequencies.

To document such predictability in the data, we perform monthly long-horizon regressions

of log excess returns on the CRSP value-weighted market returns,
∑H

h=1Rt+3+h − Rf
t+3+h,

in which H = 1, 3, 6, 12, 24, and 36 is the forecast horizon in months. When H > 1, we

use overlapping monthly observations of H-period holding returns. We regress long-horizon

returns on two-month lagged values of the vacancy-unemployment ratio. We impose the

two-month lag to guard against look-ahead bias in predictive regressions.6

From Panel A of Table 3, the V/U ratio forecasts market excess returns at business cycle

frequencies. At the one-month horizon, the slope is −1.43, which is more than 2.5 standard

errors from zero. The slopes are significant at the three-month and six-month horizons but

turn insignificant afterward. The adjusted R2s peak at 3.78% at the six-month horizon, and

decline to 3.67% at the one-year horizon and further to 1.41% at the three-year horizon.

6We obtain seasonally adjusted monthly unemployment (thousands of persons 16 years of age and older)
from the Bureau of Labor Statistics (BLS), and seasonally adjusted help wanted advertising index (the
measure of vacancies) from the Conference Board. The sample is from January 1951 to June 2006. The
Conference Board switched from help wanted advertising index to help wanted online index in June 2006.
The two indexes are not directly comparable. As such, we follow the standard practice in the labor search
literature in using the longer time series before the switch. The BLS takes less than one week to release
monthly employment and unemployment data, and the Conference Board takes about one month to release
monthly help wanted advertising index data. We verify this practice through a private correspondence with
the Conference Board staff. Finally, to make the regression slopes comparable to those in the model, we
scale up the V/U series in the data by a factor of 50 to make its average close to that in the model. The
scaling is necessary because the vacancies and unemployment series in the data have different units.
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Table 3 : Long-Horizon Regressions of Market Excess Returns on the V/U Ratio

Panel A reports long-horizon regressions of log excess returns on the value-weighted market
index from CRSP,

∑H
h=1Rt+3+h − Rf

t+3+h, in which H is the forecast horizon in months.
The regressors are two-month lagged values of the V/U ratio. We report the ordinary least
squares estimate of the slopes (Slope), t-statistics (tNW ), and the adjusted R2s in percent.
The t-statistics are adjusted for heteroscedasticity and autocorrelations of 12 lags per Newey
and West (1987). The seasonally adjusted monthly unemployment (U , thousands of persons
16 years of age and older) is from the Bureau of Labor Statistics, and the seasonally adjusted
help wanted advertising index (V ) is from the Conference Board. The sample is from January
1951 to June 2006 (666 monthly observations). We multiply the V/U series by 50 so that
its average is close to that in the model. In Panel B, we simulate 1,000 artificial samples,
each of which has 666 monthly observations. On each artificial sample, we implement the
exactly same empirical procedures as in Panel A, and report the cross-simulation averages
and standard deviations (in parentheses) for all the model moments.

Forecast horizon (H) in months

1 3 6 12 24 36

Panel A: Data

Slope −1.43 −4.20 −7.30 −10.31 −9.02 −10.16
tNW −2.58 −2.55 −2.26 −1.70 −0.97 −0.86
Adjusted R2 0.95 2.60 3.78 3.67 1.53 1.41

Panel B: Model

Slope −0.50 −1.48 −2.88 −5.41 −9.62 −13.07
(0.30) (0.85) (1.61) (2.95) (4.97) (6.41)

tNW −2.06 −2.16 −2.29 −2.56 −3.22 −3.80
(0.84) (0.88) (0.95) (1.12) (1.49) (1.78)

Adjusted R2 0.61 1.78 3.44 6.44 11.48 15.68
(0.45) (1.27) (2.39) (4.37) (7.48) (9.77)

Panel B of Table 3 reports the model’s quantitative fit for the predictive regressions. Con-

sistent with the data, the model predicts that the V/U ratio forecasts market excess returns

with a negative slope. At the one-month horizon, the predictive slope is −0.50 (t = −2.06).

At the six-month horizon, the slope is −2.88 (t = −2.29). The slopes are smaller in mag-

nitude than those in the data because the slopes are not adjusted for financial leverage.

However, the model exaggerates the predictive power of the V/U ratio. Both the t-statistic

of the slope and the adjusted R2 peak at the six-month horizon but decline afterward in

the data. In contrast, both statistics increase monotonically with the forecast horizon in the

model, probably because it only has one shock.
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Figure 1 : The Equity Premium and the Conditional Stock Market Volatility, Both
in Annual Percent

Panel A: The equity premium Panel B: The conditional volatility
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How does the model capture time-varying risk premiums? Panel A of Figure 1 plots the

equity premium in annual percent in the state space. The equity premium is countercyclical

in the model, low in expansions when employment and productivity are high, and high in

recessions when employment and productivity are low. As noted, inelastic wages give rise

to operating leverage, which amplifies the risk and risk premium in recessions. In addition,

the downward rigidity of the marginal costs of hiring, by suppressing the firm’s incentives of

hiring, further magnifies the risk dynamics. As a result, the stock market volatility is also

countercyclical (Panel B). In contrast, the V/U ratio is procyclical. In expansions, there are

more vacancies and fewer unemployed workers, whereas in recessions there are fewer vacancies

and more unemployed workers. The joint cyclicalities of the equity premium and the V/U

ratio imply that the ratio should forecast market excess returns with a negative slope.7

4.3 Dynamics of Dividends, Wages, and Profits

Rouwenhorst (1995) shows that dividends are often countercyclical in baseline production

economies. Intuitively, dividends equal profits minus investment, and profits equal output

minus wages. When the labor market is frictionless, wages equal the marginal product of

7We have also explored the model’s implications for long run risks per Bansal and Yaron (2004) and
uncertainty shocks per Bloom (2009). Kaltenbrunner and Lochstoer (2010) show that long run risks can
arise endogenously from consumption smoothing, but that consumption growth volatilities are largely
constant in baseline production economies. In contrast, consumption growth volatilities are endogenously
time-varying in our search economy (see the Online Appendix).
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labor, meaning that profits are proportional to, and as procyclical as output. Because invest-

ment is more procylical than output and profits due to consumption smoothing, dividends

(profits minus investment) must be countercyclical.

This countercyclicality is counterfactual. Dividends in the production economies corre-

spond to net payout (dividends plus stock repurchases minus new equity issues) in the data.

Following Jermann and Quadrini (2010), we measure the net payout using aggregate data

from the Flow of Funds Accounts of the Federal Reserve Board.8 The sample is quarterly

from the fourth quarter of 1951 to the fourth quarter of 2010. From NIPA, we obtain quar-

terly real GDP and real consumption (Table 1.1.6) and quarterly implicit price deflator for

GDP (Table 1.1.9) to deflate net payout. We use the Hodrick-Prescott (1997, HP) filter to

detrend real net payout, real GDP, and real consumption as HP-filtered proportional devi-

ations from the mean with a smoothing parameter of 1,600.9 We do not take logs because

the net payout can be negative in the data. Consistent with Jermann and Quadrini, we find

that the cyclical components of real net payout and real GDP have a positive correlation of

0.55. Also, real net payout and real consumption have a positive correlation of 0.53.

The search economy avoids the pitfall of countercyclical dividends in baseline production

economies. Intuitively, wages are delinked from the marginal product of labor. Because of

inelastic wages, profits are more procyclical than output. Working as operating leverage, in-

elastic wages magnify the procyclicality of profits. This amplified procyclicality of profits is

sufficient to overcome the procyclicality of total vacancy costs to turn dividends procyclical.

To see the model’s quantitative performance, we repeatedly simulate 1,000 samples from

the stationary distribution, each with 711 months (237 quarters). The sample size matches

the quarterly series from the fourth quarter of 1951 to the fourth quarter of 2010 in Jermann

and Quadrini (2010). On each sample, we time-aggregate monthly observations of dividends,

output, and consumption into quarterly observations. After detrending the quarterly series

as HP-filtered proportional deviations from the mean, we calculate the correlations between

8The net payout is net dividends of nonfarm, nonfinancial business (Table F.102, line 3) plus net divi-
dends of farm business (Table F.7, line 24) minus net increase in corporate equities of nonfinancial business
(Table F.101, line 35) minus proprietors’ net investment of nonfinancial business (Table F.101, line 39).

9Specifically, for any variable Z, the HP-filtered proportional deviations from the mean are calculated as
(Z− Z̄)/Z̄−HP[(Z− Z̄)/Z̄], in which Z̄ is the mean of Z, and HP[(Z− Z̄)/Z̄] is the HP trend of (Z− Z̄)/Z̄.
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the cyclical components of dividends, output, and consumption. The correlation between

dividends and output is 0.56, which is close to 0.55 in the data. The correlation between div-

idends and consumption is 0.66 with a cross-simulation standard deviation of 0.14. As such,

the correlation of 0.53 in the data is within one standard deviation of the model’s estimate.

We also compare the wage dynamics in the model to those in the data. Following Hage-

dorn and Manovskii (2008), we measure wages as labor share times labor productivity from

BLS. The sample is quarterly from the first quarter of 1947 to the four quarter of 2010 (256

quarters). We take logs and HP-detrend the series with a smoothing parameter of 1,600. We

find that the wage elasticity to labor productivity is 0.46, close to Hagedorn and Manovskii’s

estimate. To see the model’s performance, we repeatedly simulate from its stationary dis-

tribution 1,000 artificial samples, each with 768 months (256 quarters). On each artificial

sample, we take quarterly averages of monthly wages and labor productivity to obtain quar-

terly series. Implementing the same empirical procedure used on the real data, we find that

the wage elasticity to productivity is 0.58 in the model, which is not far from 0.46 in the data.

Finally, we compare the dynamics of profits in the model to those in the data. Following

Gourio (2007), we obtain the profits data from NIPA Table 1.12 row 13 (corporate prof-

its with inventory valuation adjustment and capital consumption adjustment). We use the

implicit price deflator of GDP to adjust profits in terms of 2005 dollars. The GDP data

are from Table 1.1.6. The sample is quarterly from the first quarter of 1951 to the fourth

quarter of 2010. The average profits-to-GDP ratio in the sample is 9.36%. Detrending both

profits and GDP using log deviations from the HP-trend, we calculate the relative volatility

of profits (the volatility of profits divided by the volatility of GDP) to be 5.68.

Across 1,000 simulations, each with 237 quarters, the model implies an average profits-

to-GDP ratio of 9.08%, with a cross-simulation standard deviation of 0.57%. As such, the

data moment of 9.36% is well within the plausible range implied by the model. However, the

relative volatility of profits in the model is 3.49, with a cross-simulation standard deviation

of 0.58. A comparison with the data moment of 5.68 suggests that the Nash-bargained wage

is not inelastic enough to match the volatility of profits in the data.
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Table 4 : Comparative Statics on Asset Prices

We report four experiments: (i) b = .4 is for the value of unemployment activities set to 0.4;
(ii) s = .035 is for the job separation rate set to 0.035; (iii) κt = .815 is for the proportional
costs of vacancy κ0 = .815 and the fixed costs κ1 = 0, in which .815 is the average κt in
the benchmark calibration; and (iv) ι = .9 is for the elasticity of the matching function set
to .9. In each experiment, all the other parameters remain unchanged. See Table 2 for the
description of Panel A. See the caption of Table 3 for the description of Panel B: (1) and
(12) denote for forecast horizons of one and 12 months, respectively.

Data Benchmark b = .4 s = .035 κt = .815 ι = .9

Panel A: Basic business cycle and financial moments

σC 3.04 3.63 1.69 2.21 2.75 4.26
ρC(1) 0.38 0.18 0.13 0.15 0.15 0.22
ρC(3) −0.21 −0.13 −0.10 −0.10 −0.11 −0.13

σY 4.93 4.13 2.05 2.67 3.37 4.83
ρY (1) 0.54 0.19 0.13 0.14 0.15 0.22
ρY (3) −0.18 −0.12 −0.10 −0.10 −0.11 −0.13

E[R− Rf ] 5.07 5.70 0.12 0.00 2.34 6.07
E[Rf ] 0.59 2.90 3.96 3.96 3.74 3.01
σR 12.94 10.83 3.87 11.47 12.29 10.79

σR
f

1.87 1.34 0.13 0.63 1.04 1.51

Panel B: Forecasting market excess returns with the V/U ratio

Slope(1) −1.43 −0.50 −0.07 −0.19 −0.61 −0.62
Slope(12) −10.31 −5.41 −0.79 −2.07 −6.63 −6.58
tNW (1) −2.58 −2.06 −0.67 −0.65 −1.71 −2.34
tNW (12) −1.70 −2.56 −0.87 −0.83 −2.13 −2.91

4.4 Intuition: Comparative Statics on Asset Prices

To illustrate the intuition underlying the equity premium in the model, Table 4 conducts four

comparative statics. (i) We change the value of unemployment activities, b, from 0.85 in the

benchmark calibration to 0.4; (ii) we lower the job separation rate, s, from 0.05 to 0.035; (iii)

we adjust the proportional costs of vacancy, κ0, from 0.6 to 0.815, and simultaneously, adjust

the fixed costs of vacancy, κ1, from 0.4 to zero (0.815 is the average κt in the simulations

from the benchmark economy); and (iv) we reduce the elasticity of the matching function,

ι, from 1.25 to 0.9. In each experiment, all the other parameters remain unchanged.

In the first experiment, b = 0.4, which is the value in Shimer (2005). Because unemploy-

ment is less valuable to workers, the unemployment rate drops to 5%. A lower b also means
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that the wage rate is more elastic to productivity shocks. The wage elasticity to produc-

tivity increases to 0.68 from 0.58 in the benchmark economy. As such, profits, vacancies,

employment, and output are all less elastic to shocks. The consumption growth volatility

drops to 1.69% per annum and the output growth volatility to 2.05%. The equity premium

drops to only 0.12% per annum, and the market volatility drops to 3.87%. Finally, labor

market tightness shows no predictive power for market excess returns.

These results suggest that a high value of b is important for labor market volatilities as

well as the equity premium. Intuitively, by dampening the procyclical covariation of wages

with productivity, a high value of bmagnifies the procyclical variation of profits and vacancies

to increase labor market volatilities. This operating leverage mechanism also impacts asset

prices because the high b amplifies the procyclical variation of dividends, raising the equity

premium and the stock market volatility and making both financial moments countercyclical.

In the second experiment, we reduce the separation rate, s, from 5% to 3.5% per month.

Because employment is destructed at a lower rate, the mean unemployment rate drops to

4.95%. In addition, the small job flows induce only small fluctuations in aggregate employ-

ment. As such, the consumption growth volatility drops to 2.21% per annum from 3.63% in

the benchmark economy, and the output growth volatility drops to 2.67% from 4.13%. The

equity premium becomes tiny and largely time-invariant.

In the third experiment, we remove fixed matching costs, while maintaining the same

level of average unit costs of vacancy in the benchmark economy. As noted, the fixed costs

affect the economy by reinforcing the downward rigidity of the marginal costs of hiring. Re-

moving the fixed costs weakens the downward rigidity, allowing the firm to create more jobs

in recessions. Table 4 shows that the output growth volatility falls to 3.37% per annum, the

consumption growth volatility to 2.75%, and the equity premium to 2.34%.10

In the final experiment, we quantify the impact of the elasticity parameter in the match-

ing function by varying it from 1.25 to 0.9. The last column of Table 4 shows that, sensibly,

10There exists a tradeoff between the level and the cyclicality of the unit costs of vacancy, κt, for our
quantitative results. In an earlier draft, we report that with the proportional unit costs, κ0, raised to 0.975,
all our quantitative results in the benchmark economy subsist, even without fixed matching costs.
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lowering the elasticity strengthens the risk dynamics in the model. Because the labor market

becomes more frictional in matching vacancies with unemployed workers, the consumption

growth volatility goes up to 4.26% per annum, and the equity premium increases to 6.07%.

4.5 Endogenous Long Run Risks and Uncertainty Shocks

We also explore the model’s implications for long run risks per Bansal and Yaron (2004)

and uncertainty shocks per Bloom (2009). Both have received a lot of attention in recent

literature. Bansal and Yaron propose long run consumption risks to explain aggregate as-

set prices.11 Kaltenbrunner and Lochstoer (2010) argue that the long run risks can arise

endogenously via consumption smoothing in a baseline production economy.12 We examine

how the consumption process in the search economy compares with that in Kaltenbrunner

and Lochstoer and with that in Bansal and Yaron. This economic question is important be-

cause different parameterizations of the consumption process can be largely consistent with

observable moments of consumption growth such as volatility and autocorrelations (Table

2). Yet, different parameterizations imply vastly different economic mechanisms.

From the model’s stationary distribution, we simulate one million monthly periods. We

calculate expected consumption growth and the conditional volatility of realized consumption

growth in the state space, and use the solutions to simulate these moments. Fitting the con-

sumption growth process specified by Bansal and Yaron (2004) on the simulated data yields:

zt+1 = .697zt + .598σtet+1, (22)

gt+1 = zt + σtηt+1, (23)

σ2
t+1 = .00262 + .658(σ2

t − .00262) + 1.91× 10−5wt+1. (24)

In addition, the unconditional correlation between et+1 and ηt+1 is 0.34, that between et+1

11Bansal and Yaron (2004) specify the monthly consumption growth process as zt+1 = .979zt+ .044σtet+1,
gt+1 = .0015 + zt + σtηt+1, and σ2

t+1 = .00782 + .987(σ2
t − .00782) + .23 × 10−5wt+1, in which gt+1 is the

consumption growth, zt is the expected consumption growth, σt is the conditional volatility of gt+1, and
et+1, ut+1, ηt+1, and wt+1, are i.i.d. standard normal shocks (mutually uncorrelated). Bansal and Yaron
argue that the stochastic slow-moving component, zt, of the consumption growth is crucial for the equity
premium, and that the mean-reverting volatility helps explain the time-variation in the risk premium.

12Their Table 6 shows that the consumption growth follows zt+1 = .986zt + .093σet+1 and gt+1 =
.0013 + zt + σηt+1, with transitory productivity shocks. With permanent productivity shocks, zt follows
zt+1 = .990zt + .247σet+1. However, both versions of their model fail to reproduce time-varying volatilities.
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and wt+1 is zero, and the correlation between ηt+1 and wt+1 is 0.12.

Although consumption growth is not i.i.d. in our economy, the persistence in expected

consumption growth is only 0.697, which is lower than those in Bansal and Yaron (2004)

and Kaltenbrunner and Lochstoer (2010). However, expected consumption growth is more

volatile in our economy. The conditional volatility of expected consumption growth is about

60% of the conditional volatility of realized consumption growth. This percentage is higher

than 9.3% and 24.7% in Kaltenbrunner and Lochstoer and 4.4% in Bansal and Yaron.

Differing from baseline production economies, the search economy gives rise endogenously

to time-varying volatilities (uncertainty shocks). Equation (24) shows that the conditional

variance of the consumption growth rate appears stochastic. The persistence is 0.658, which

is lower than 0.987 in Bansal and Yaron. However, the volatility of the stochastic variance

is more than eight times of theirs. As such, long run risks (in the sense of high persistence of

the expected consumption growth) do not play a prominent role in the search economy. As

the economy occasionally falls into disasters (Section 5), shocks to both the expected con-

sumption growth and the conditional variance of consumption growth are magnified, and the

persistence for both the expected consumption growth and the conditional variance lowered.

5 Endogenous Disasters

The search economy gives rise endogenously to strong nonlinearity indicative of disasters.

5.1 Disasters in the Benchmark Economy

We simulate one million monthly periods from the model’s stationary distribution. Figure 2

reports the empirical cumulative distribution functions for key quantities and asset pricing

moments. From Panel A, unemployment is positively skewed with a long right tail. As the

population moments, the mean unemployment rate is 8.51%, the median 7.30%, and the

skewness 7.83. The 2.5 percentile of unemployment is close to the median, 5.87%, whereas

the 97.5 percentile is far away, 19.25%. As a mirror image, the employment rate is negatively

skewed with a long left tail. As a result, output, consumption, and dividends all show rare

but deep disasters (Panels B to D). With small probabilities, the economy falls off a cliff.
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Figure 2 : Empirical Cumulative Distribution Functions from the Benchmark
Model’s Stationary Distribution
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Panel C: Consumption Panel D: Dividends
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The disasters in macroeconomic quantities reflect in asset prices as rare upward spikes

in the equity premium, Et[Rt+1 − Rf
t+1], and in the conditional stock market volatility, σRt .

From Panel E, the stationary distribution of the equity premium is positively skewed with

a long right tail. The equity premium has a median of 6.16% per annum. However, with

small probabilities, the conditional equity premium can reach close to 25%. Panel F shows

that the conditional volatility hovers around its median about 11% per annum. However,

with small probabilities, the volatility can jump to more than 35%.

Do the economic disasters arising endogenously from the model resemble those in the

data? Barro and Ursúa (2008) apply a peak-to-trough method on international data from

1870 to 2006 to identify economic crises, defined as cumulative fractional declines in per

capita consumption or GDP of at least 10%. For consumption, the disaster probability is

estimated to be 3.63%, the average size 22%, and the average duration 3.6 years. For GDP,

the disaster probability is 3.69%, the average size 21%, and the average duration 3.5 years.13

To quantify the disasters in the model, we simulate 1,000 samples from the model’s sta-

tionary distribution. Each sample has 1,644 months (137 years) to match the average sample

size in Barro and Ursúa (2008). On each sample, we time-aggregate the monthly observa-

tions of consumption and output into annual observations. We then apply Barro and Ursúa’s

measurement, and report the cross-simulation averages and the 5 and 95 percentiles for the

disaster probability, size, and duration for both consumption and GDP (output) disasters.

For consumption disasters, Panel A of Table 5 shows that the disaster probability and the

average disaster size are 3.08% and 20.21% in the model, which are close to 3.63% and 22%

in the data, respectively. The average duration is 4.81 years, which is longer than 3.6 years

in the data. The cross-simulation standard deviation of the average duration is 1.71 years,

meaning that the data duration is within one standard deviation from the model’s estimate.

From Panel B of Table 5, the average size of GDP disasters in the model, 19.12%, is close

13Specifically, Barro and Ursúa (2008) measure disaster moments as follows. Suppose there are two states,
normalcy and disaster. The disaster probability measures the likelihood with which the economy shifts from
normalcy to disaster in a given year. The number of disaster years is the number of years in the interval
between peak and trough for each disaster event. The number of normalcy years is the total number of
years in the sample minus the number of disaster years. Finally, the disaster probability is the ratio of the
number of disasters over the number of normalcy years.
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Table 5 : Moments of Economic Disasters

The data moments are from Barro and Ursúa (2008). The model moments are from
1,000 simulations, each with 1,644 monthly observations. We time-aggregate these monthly
observations of consumption and output into 137 annual observations. On each artificial
sample, we apply Barro and Ursúa’s peak-to-trough method to identify economic crises as
cumulative fractional declines in per capita consumption or GDP of at least 10%. We report
the averages as well as the 5 and 95 percentiles across the simulations. The p-values are the
percentages with which a given model moment is higher than its data moment. The disaster
probabilities and average size are all in percent, and the average duration is in terms of years.

Data Model

Mean 5% 95% p-value

Panel A: Consumption disasters

Probability 3.63 3.08 0.75 6.42 0.30
Average size 22 20.21 11.49 39.37 0.25
Average duration 3.6 4.81 3.00 7.00 0.83

Panel B: GDP disasters

Probability 3.69 4.66 1.58 8.29 0.30
Average size 21 19.12 12.34 34.05 0.28
Average duration 3.5 4.51 3.25 6.18 0.84

to that in the data, 21%. However, the disaster probability of 4.66% is somewhat higher

than 3.69% in the data. The cross-simulation standard deviation of this probability is 2.01%,

meaning that the probability in the data is within one standard deviation from the model.

The average duration of the GDP disasters in the model is 4.51 years, which is longer than

3.5 years in the data. The cross-simulation standard deviation of the duration is 0.88 years,

meaning that the data duration is slightly more than one standard deviation from the model.

Figure 3 reports the frequency distributions of consumption and GDP disasters by size

and duration averaged across 1,000 simulations (each with 137 years) from the model. The

size and duration distributions for consumption and GDP disasters display roughly similar

patterns as those in the data (see Barro and Ursúa’s (2008) Figures 1 and 2). In particular,

the size distributions seem to follow a power-law density per Barro and Jin (2011).

5.2 Disasters with Log Utility

To see the economic mechanisms underlying the disasters, we first show that a simplified

economy with log utility displays disasters similar to those in the benchmark economy. As
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Figure 3 : Distributions of Consumption and GDP Disasters by Size and Duration
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such, although important for asset prices, recursive preferences are not important for disas-

ters in macroeconomic quantities, a finding that echoes Tallarini (2000).14 We then conduct

comparative statics on the log-utility model to obtain intuition behind the disaster dynamics.

With log utility, the stochastic discount factor becomes Mt+1 = β(Ct/Ct+1), and the

equity premium is close to zero. To make the log-utility model comparable with the

benchmark economy, we recalibrate β = e−.00716 to make the discount rate around 8.6% per

annum, which is the average discount rate in the benchmark model. Except for the preference

parameters, all the other parameters remain identical to those in benchmark economy.

14Recursive preferences are also largely irrelevant for labor market volatilities (see the Online Appendix).
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Figure 4 : Empirical Cumulative Distribution Functions from the Log-Utility
Model’s Stationary Distribution
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Figure 4 reports the empirical cumulative distribution functions for key quantities from

the log-utility model. The simulation design is identical to that in Figure 2. We observe that

the log-utility model displays similar disaster dynamics as in the benchmark model. From

Panel A, unemployment is positively skewed with a long right tail. The mean unemployment

rate is 8.41%, the median 7.27%, and the skewness 7.63. The 2.5 percentile is close to the

median, 5.9%, but the 97.5 percentile is far away, 18.93%. Overall, these statistics are quite

close to those in the benchmark model. The remaining panels in Figure 4 report that output,

consumption, and dividends all have long left tails.

Table 6 show that the disaster moments in the log-utility model are also close to those
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Table 6 : Comparative Statics on Disaster Dynamics

“Benchmark” denotes the benchmark economy with recursive preferences. “Log-utility”
denotes the log-utility model with β recalibrated to e−.00716. Except for the preference
parameters, all the other parameters in the log-utility model are identical to those in the
benchmark model. The four remain columns report four comparative static experiments
based on the log-utility model: (i) b = .4 is for the value of unemployment activities set
to .4; (ii) s = .035 is for the job separation rate set to 0.035; (iii) κt = .813 is for the
proportional unit costs of vacancy κ0 = .813 and the fixed unit costs κ1 = 0, in which .813
is the average κt in the simulations from the log-utility model; and (iv) ι = .9 is for the
elasticity of the matching function set to .9. In each experiment, all the other parameters
are identical to those in the log-utility model.

Benchmark Log-utility b = .4 s = .035 κt = .813 ι = .9

Panel A: Consumption disasters

Probability 3.08 2.82 0.40 1.30 1.84 3.87
Size 20.21 20.25 11.60 15.17 16.80 20.25
Duration 4.81 4.95 6.10 5.48 5.17 4.85

Panel B: GDP disasters

Probability 4.66 4.32 0.65 2.16 3.28 5.62
Size 19.12 19.17 13.27 15.39 16.52 19.86
Duration 4.51 4.62 5.79 5.11 4.76 4.54

in the benchmark model. Using the same simulation design as in Table 5, we find that for

consumption disasters, the probability is 2.82%, the average size is 20.25%, and the average

duration is 4.95 years in the log-utility model. For GDP disasters, the probability is 4.32%,

the average size is 19.17, and the average duration is 4.62 years.

The last four columns of Table 6 reports four comparative statics on the log-utility model.

The experimental design is similar to that in Table 4. We see that the low-b economy shows

no disaster risks. The consumption disaster probability is only 0.40%, and the GDP disaster

probability 0.65%. The average magnitudes of the consumption and GDP disasters are also

substantially lower at 11.60% and 13.27%, respectively. The low-b economy also takes longer

to accumulate a given magnitude of declines in consumption and GDP. Intuitively, with small

profits, wages are inelastic to productivity. When productivity is very low, wages remain

at a relatively high level, shrinking the small profits even further, stifling job creation flows.

In contrast, with large profits, wages are more sensitive to shocks to productivity. When

employment falls, wages drop as well, providing incentives for the firm to hire to offset large
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job destruction flows. As such, disaster risks are minimized.

In the second experiment, reducing the separation rate from 5% to 3.5% per month makes

the disasters less extreme and less frequent. The consumption and GDP disaster probabili-

ties reduce to 1.30% and 2.16%, respectively, which are more than halved relative to those in

the log-utility model. The magnitudes of the disasters are also smaller: 15.17% and 15.39%.

Intuitively, because jobs are destroyed only at a lower rate, the economy can create enough

jobs to shore up aggregate employment and to reduce disaster risks.

The next-to-last column in Table 6 shows that without fixed matching costs, disasters

are less frequent and less severe. The consumption disaster probability drops to 1.84% from

2.82% in the log-utility model, and the GDP disaster probability drops to 3.28% from 4.32%.

The magnitudes of the disasters are also reduced to 16.80% and 16.52%, respectively.

Finally, the last column shows that reducing the elasticity of the matching function, ι,

from 1.25 to .9 increases disaster risks. The consumption disaster probability rises to 3.87%,

and the GDP disaster probability to 5.62%. However, the magnitude of the consumption

disasters remains unchanged at 20.25%, and that of the GDP disasters grows only slightly to

19.86%. Intuitively, a lower matching elasticity means that the labor market is more frictional

in matching vacancies with unemployed workers. Because job creation flows are hampered,

whereas job destruction flows remain large, the economy slips into disasters more frequently.

5.3 Additional Intuition: The Impact of Search Frictions

To further illustrate the impact of small profits and matching frictions on the disaster dynam-

ics, Figure 5 plots the vacancy filling rate, q(θt), and the marginal costs of hiring, κ0/q(θt)+

κ1, for the small profits model (b = 0.85) and for the large profits model (b = 0.4), both with

log utility. Each panel has three lines corresponding to three different values of productivity.

In addition to the magnitude and the elasticity of wages, the other key determinant of

the firm’s hiring decisions is the marginal costs of hiring, κ0/q(θt) + κ1. Small profits also

work through the downward rigidity in the marginal costs. Panel A of Figure 5 shows that

when productivity is very low, the vacancy filling rate, q(θt), is close to one. Intuitively,

the labor market is populated by a large number of unemployed workers competing for a
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Figure 5 : Labor Market Properties in the Log-Utility Model

Let x1 < x2 < . . . < x15 denote the x grid. In each panel, the blue solid line is for xt = x3,
the red dashed line for xt = x8, and the black dashdot line for xt = x13.
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few vacancies. Filling a vacancy with an unemployed worker is easy, and the vacancy filling

rate stays close to one, with no room to increase further. Accordingly, the marginal costs of

hiring are close to the constant κ0 + κ1, with no room to drop, giving rise to the downward

rigidity (Panel B). The rigid marginal costs in turn suppress the firm’s incentives of hiring,

smothering job creation flows, deepening recessions that occasionally turn into disasters.

Arising from the intrinsic nature of the matching process, this downward rigidity subsists

even without fixed matching costs (κ1 = 0). By putting the constant κ1 into the marginal

costs of hiring, the fixed costs further restrict the ability of the marginal costs to decline,

fortifying the downward rigidity. This mechanism explains why removing the fixed costs

makes disasters less frequent and less severe in the log-utility model (see Table 6).

In contrast, the downward rigidity in the marginal costs is absent with large profits. From

Panel C, q(θt) is quite sensitive to changes in employment when profits are large. Intuitively,

with large profits, vacancies are plentiful even when productivity is low. The labor market is

populated by a fair number of both vacancies and unemployed workers. As employment falls,

q(θt) keeps climbing, reducing the marginal costs of hiring (Panel D). The falling marginal

costs stimulate job creation and prevent the economy from slipping into disasters.

6 Conclusion

We take a first stab at embedding the standard Diamond-Mortensen-Pissarides search model

of the labor market into an equilibrium asset pricing framework. We find that labor market

frictions are important for equilibrium asset prices. Quantitatively, the model reproduces a

realistic equity premium, a high stock market volatility, and a low and stable interest rate

volatility. The equity premium is also countercyclical, and forecastable by labor market

tightness, a pattern that we confirm in the data. Intriguingly, three key ingredients in the

model (small profits, large job flows, and matching frictions) combine to create endogenously

rare economic disasters as in Rietz (1988) and Barro (2006).

As a first stab in embedding labor market frictions into equilibrium asset pricing, we

have tried to keep the model parsimonious. In particular, we do not claim that the baseline

36



search model “explains” the equity premium puzzle. Nevertheless, the rich dynamics dis-

played even in this baseline model, many of which are conducive to understanding the equity

premium, yet are entirely absent from standard production economies, suggest that labor

market frictions might be quite important for equilibrium asset pricing. Likewise, we do not

interpret the absence of financial frictions in our model as saying that financial frictions are

not important for disasters. Rather, we interpret our findings as saying that one probably

should not ignore labor market frictions when trying to understand disasters.

Several directions are possible for future work. First, many alternative mechanisms can

reproduce realistic labor market dynamics in the search literature. One can explore as-

set pricing implications of, for example, alternative wage bargaining games (e.g., Hall and

Milgrom (2008)). Second, more generally, one can introduce endogenous labor supply and

endogenous capital accumulation into our framework to develop a unified equilibrium frame-

work for both asset prices and business cycles. Third, one can introduce financial frictions

such as defaultable bonds into the model to study the interaction between labor market

frictions and financial frictions in endogenizing disasters. Finally, with the equity premium

in sight in general equilibrium production economies, one can introduce firm heterogeneity

to develop an equilibrium framework for the cross-section of expected stock returns.
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For Online Publication

A The Stock Return Equation

We prove equation (13) following the same logic in Liu, Whited, and Zhang (2009) in the

context of the q-theory of investment. Rewrite the equity value maximization problem as:

St = max
Vt+�t,Nt+�t+1

Et

⎡
⎢⎢⎢⎢⎣

∞∑
�t=0

Mt+�t

⎡
⎢⎢⎢⎢⎣
Xt+�tNt+�t −Wt+�tNt+�t − κt+�tVt+�t

−μt+�t [Nt+�t+1 − (1− s)Nt+�t

−Vt+�tq(θt+�t)] + λt+�tq(θt+�t)Vt+�t

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ , (A.1)

in which μt is the Lagrange multiplier on the employment accumulation equation, and λt is

the Lagrange multiplier on the V -constraint on job creation. The first-order conditions with

respect to Vt and Nt+1 in maximizing the market value of equity are given by, respectively:

μt =
κ0
q(θt)

+ κ1 − λt, (A.2)

μt = Et
[
Mt+1

[
Xt+1 −Wt+1 + (1− s)μt+1

]]
. (A.3)

The Kuhn-Tucker conditions are given by equation (12). Define dividends as Dt ≡
XtNt−WtNt− κtVt and the ex-dividend equity value as Pt ≡ St−Dt. Expanding St yields:

Pt +XtNt −WtNt − κtVt = St = XtNt −WtNt − κtVt + λtq(θt)Vt

−μt [Nt+1 − (1− s)Nt − Vtq(θt)] + EtMt+1 [Xt+1Nt+1 −Wt+1Nt+1 − κt+1Vt+1

−μt+1 [Nt+2 − (1− s)Nt+1 − Vt+1q(θt+1)] + λt+1q(θt+1)Vt+1

]
+ . . . (A.4)

Recursively substituting equations (A.2) and (A.3) yields:

Pt +XtNt −WtNt − κtVt = XtNt −WtNt + μt(1− s)Nt. (A.5)
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Using equation (A.2) to simplify further:

Pt = κtVt + μt(1− s)Nt = μt[(1− s)Nt + q(θt)Vt] + λtq(θt)Vt = μtNt+1, (A.6)

in which the last equality follows from equation (12).

To show equation (13), we expand the stock returns:

Rt+1 =
St+1

St −Dt
=
μt+1Nt+2 +Xt+1Nt+1 −Wt+1Nt+1 − κt+1Vt+1

μtNt+1

=
Xt+1 −Wt+1 − κt+1Vt+1/Nt+1 + μt+1 [(1− s) + q(θt+1)Vt+1/Nt+1]

μt

=
Xt+1 −Wt+1 + (1− s)μt+1

μt
+
μt+1q(θt+1)Vt+1 − κt+1Vt+1

μtNt+1

=
Xt+1 −Wt+1 + (1− s)μt+1

μt
, (A.7)

in which the last equality follows because the Kuhn-Tucker conditions imply:

μt+1q(θt+1)Vt+1 − κt+1Vt+1 = −λt+1q(θt+1)Vt+1 = 0. (A.8)

B Equilibrium Wages under Nash Bargaining

Let η ∈ (0, 1) denote the relative bargaining weight of the worker, JNt the marginal value of

an employed worker to the representative family, JUt the marginal value of an unemployed

worker to the representative family, φt the marginal utility of the representative family, SNt

the marginal value of an employed worker to the representative firm, and SV t the marginal

value of an unfilled vacancy to the representative firm. A worker-firm match turns an unem-

ployed worker into an employed worker for the representative household as well as an unfilled

vacancy into a filled vacancy (an employed worker) for the firm. As such, we can define the
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total surplus from the Nash bargain as:

Λt ≡ JNt − JUt
φt

+ SNt − SV t. (B.1)

The wage equation (17) is determined via the Nash worker-firm bargain:

max
{Wt}

(
JNt − JUt

φt

)η
(SNt − SV t)

1−η , (B.2)

The outcome of maximizing equation (B.2) is the surplus-sharing rule:

JNt − JUt
φt

= ηΛt = η

(
JNt − JUt

φt
+ SNt − SV t

)
. (B.3)

As such, the worker receives a fraction of η of the total surplus from the wage bargain. In

what follows, we derive the wage equation (17) from the sharing rule in equation (B.3).

B.1 Workers

To derive JNt and JUt, we need to specify the details of the representative household’s prob-

lem. Tradeable assets consist of risky shares and a risk-free bond. Let Rf
t+1 denote the

risk-free interest rate, which is known at the beginning of period t, Πt the household’s

financial wealth, χt the fraction of the household’s wealth invested in the risky shares,

RΠ
t+1 ≡ χtRt+1 + (1 − χt)R

f
t+1 the return on wealth, and Tt the taxes raised by the gov-

ernment. The household’s budget constraint is given by:

Πt+1

RΠ
t+1

= Πt − Ct +WtNt + Utb− Tt. (B.4)

The household’s dividends income, Dt, is included in the current financial wealth, Πt.

Let φt denote the Lagrange multiplier for the household’s budget constraint (B.4). The
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household’s maximization problem is given by:

Jt =

[
(1− β)C

1− 1
ψ

t + β
[
Et
(
J1−γ
t+1

)] 1−1/ψ
1−γ

] 1
1−1/ψ

− φt

(
Πt+1

RΠ
t+1

− Πt + Ct −WtNt − Utb+ Tt

)
,

(B.5)

The first-order condition for consumption yields:

φt = (1− β)C
− 1
ψ

t

[
(1− β)C

1− 1
ψ

t + β
[
Et
(
J1−γ
t+1

)] 1−1/ψ
1−γ

] 1
1−1/ψ

−1

, (B.6)

which gives the marginal utility of consumption.

Recalling Nt+1 = (1− s)Nt + f(θt)Ut and Ut+1 = sNt + (1− f(θt))Ut, we differentiate Jt

in equation (B.5) with respect to Nt:

JNt = φtWt +
1

1− 1
ψ

[
(1− β)C

1− 1
ψ

t + β
[
Et
(
J1−γ
t+1

)] 1−1/ψ
1−γ

] 1
1−1/ψ

−1

×1 − 1
ψ

1 − γ
β
[
Et
(
J1−γ
t+1

)] 1−1/ψ
1−γ −1

Et
[
(1− γ)J−γ

t+1[(1− s)JNt+1 + sJUt+1]
]
. (B.7)

Dividing both sides by φt:

JNt
φt

=Wt +
β

(1− β)C
− 1
ψ

t

⎡
⎣ 1[
Et
(
J1−γ
t+1

)] 1
1−γ

⎤
⎦

1
ψ
−γ

Et
[
J−γ
t+1[(1− s)JNt+1 + sJUt+1]

]
. (B.8)

Dividing and multiplying by φt+1:

JNt
φt

= Wt + Et

⎡
⎢⎣β
(
Ct+1

Ct

)− 1
ψ

⎡
⎣ Jt+1[
Et
(
J1−γ
t+1

)] 1
1−γ

⎤
⎦

1
ψ
−γ [

(1− s)
JNt+1

φt+1

+ s
JUt+1

φt+1

]⎤⎥⎦
= Wt + Et

[
Mt+1

[
(1− s)

JNt+1

φt+1

+ s
JUt+1

φt+1

]]
. (B.9)
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Similarly, differentiating Jt in equation (B.5) with respect to Ut yields:

JUt = φtb+
1

1− 1
ψ

[
(1− β)C

1− 1
ψ

t + β
[
Et
(
J1−γ
t+1

)] 1−1/ψ
1−γ

] 1
1−1/ψ

−1

×1− 1
ψ

1− γ
β
[
Et
(
J1−γ
t+1

)] 1−1/ψ
1−γ −1

Et
[
(1− γ)J−γ

t+1[f(θt)JNt+1 + (1− f(θt))JUt+1]
]
.(B.10)

Dividing both sides by φt:

JUt
φt

= b+
β

(1− β)C
− 1
ψ

t

⎡
⎣ 1[
Et
(
J1−γ
t+1

)] 1
1−γ

⎤
⎦

1
ψ
−γ

Et
[
J−γ
t+1[f(θt)JNt+1 + (1− f(θt))JUt+1]

]
.

(B.11)

Dividing and multiplying by φt+1:

JUt
φt

= b+ Et

⎡
⎢⎣β(Ct+1

Ct

)− 1
ψ

⎡
⎣ Jt+1[
Et
(
J1−γ
t+1

)] 1
1−γ

⎤
⎦

1
ψ
−γ [

f(θt)
JNt+1

φt+1

+ (1− f(θt))
JUt+1

φt+1

]⎤⎥⎦
= b+ Et

[
Mt+1

[
f(θt)

JNt+1

φt+1

+ (1− f(θt))
JUt+1

φt+1

]]
. (B.12)

B.2 The Firm

Start by rewriting the infinite-horizon value-maximization problem of the firm recursively as:

St = XtNt −WtNt − κtVt + λtq(θt)Vt + Et[Mt+1St+1], (B.13)

subject to Nt+1 = (1− s)Nt + q(θt)Vt. The first-order condition with respect to Vt says:

SV t = −κt + λtq(θt) + Et[Mt+1SNt+1q(θt)] = 0. (B.14)

Equivalently,

κ0
q(θt)

+ κ1 − λt = Et[Mt+1SNt+1]. (B.15)
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In addition, differentiating St with respect to Nt yields:

SNt = Xt −Wt + (1− s)Et[Mt+1SNt+1]. (B.16)

Combining the last two equations yields the job creation condition in equation (11).

B.3 The Wage Equation

From equations (B.9), (B.12), and (B.16), the total surplus of the worker-firm relationship is:

Λt = Wt + Et

[
Mt+1

[
(1− s)

JNt+1

φt+1

+ s
JUt+1

φt+1

]]
− b

−Et
[
Mt+1

[
f(θt)

JNt+1

φt+1

+ (1− f(θt))
JUt+1

φt+1

]]
+Xt −Wt + (1− s)Et[Mt+1SNt+1]

= Xt − b+ (1− s)Et

[
Mt+1

(
JNt+1 − JUt+1

φt+1

+ SNt+1

)]
− f(θt)Et

[
Mt+1

JNt+1 − JUt+1

φt+1

]
= Xt − b+ (1− s)Et [Mt+1Λt+1]− ηf(θt)Et [Mt+1Λt+1] , (B.17)

in which the last equality follows from the definition of Λt and the surplus sharing rule (B.3).

The sharing rule implies SNt = (1− η)Λt, which, combined with equation (B.16), yields:

(1− η)Λt = Xt −Wt + (1− η)(1− s)Et [Mt+1Λt+1] . (B.18)

Combining equations (B.17) and (B.18) yields:

Xt −Wt + (1− η)(1− s)Et [Mt+1Λt+1] = (1− η)(Xt − b) + (1− η)(1− s)Et [Mt+1Λt+1]

−(1 − η)ηf(θt)Et [Mt+1Λt+1]

Xt −Wt = (1− η)(Xt − b)− (1− η)ηf(θt)Et [Mt+1Λt+1]

Wt = ηXt + (1− η)b+ (1− η)ηf(θt)Et [Mt+1Λt+1] .
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Using equations (B.3) and (B.15) to simplify further:

Wt = ηXt + (1− η)b+ ηf(θt)Et [Mt+1SNt+1] (B.19)

= ηXt + (1− η)b+ ηf(θt)

[
κ0
q(θt)

+ κ1 − λt

]
. (B.20)

Using the Kuhn-Tucker conditions, when Vt > 0, then λt = 0, and equation (B.20) reduces

to the wage equation (17) because f(θt) = θtq(θt). On the other hand, when the nonnega-

tivity constraint is binding, λt > 0, but Vt = 0 means θt = 0 and f(θt) = 0. Equation (B.20)

reduces to Wt = ηXt + (1− η)b. Because θt = 0, the wage equation (17) continues to hold.

C Details of the Globally Nonlinear Algorithm

The two functional equations (19) and (21) should be expressed only in terms of two state

variables Nt and xt. As noted, we exploit a convenient mapping from the conditional expec-

tation function, Et, to policy and multiplier functions to eliminate the need to parameterize

the multiplier separately. After obtaining Et, we first calculate q̃(θt) = κ0/ (Et − κ1) . If

q̃(θt) < 1, the nonnegativity constraint is not binding, we set λt = 0 and q(θt) = q̃(θt). We

then solve θt = q−1(q̃(θt)), in which q−1(·) is the inverse function of q(·) defined in equation

(3), and Vt = θt(1−Nt). If q̃(θt) ≥ 1, the nonnegativity constraint is binding, we set Vt = 0,

θt = 0, q(θt) = 1, and λt = κ0 + κ1 −Et. We then perform the following set of substitutions:

Ut = 1−Nt (C.1)

Nt+1 = (1− s)Nt + q(θt)V (Nt, xt) (C.2)

xt+1 = ρxt + σεt+1 (C.3)

C(Nt, xt) = exp(xt)Nt − [κ0 + κ1q(θt)]V (Nt, xt) (C.4)

Mt+1 = β

[
C(Nt+1, xt+1)

C(Nt, xt)

]− 1
ψ

[
J(Nt+1, xt+1)

Et[J(Nt+1, xt+1)1−γ ]
1

1−γ

] 1
ψ
−γ

, (C.5)
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and

Wt = η [exp(xt) + [κ0 + κ1q(θt)] θt] + (1− η)b. (C.6)

We approximate the xt process in equation (6) based on the discrete state space method

of Rouwenhorst (1995) with 15 grid points.15 This grid is large enough to cover the values of

xt within four unconditional standard deviations from its unconditional mean of zero. We set

the minimum value of Nt to be 0.0365 and the maximum value to be 0.99. This range is large

enough so that Nt never hits one of the boundaries in simulations. We use cubic splines with

40 basis functions on the N space to approximate J(Nt, xt) and E(Nt, xt) on each grid point

of xt. We use extensively the approximation took kit in the CompEcon Toolbox in Matlab

of Miranda and Fackler (2002). To obtain an initial guess for the projection algorithm, we

use the social planner’s solution via value function iteration. Solving the nonlinear model

takes a lot of care, otherwise the projection algorithm would not converge. (Unlike the value

function, iterating on the first-order conditions is typically not a contraction mapping.) The

idea of homotopy continuation methods (e.g., Judd (1998, p. 179)) is used extensively to

ensure convergence for a wide range of parameter values.16

Figure C.1 reports the error in the J functional equation (19), J(Nt, xt)
1− 1

ψ − (1 −
β)C(Nt, xt)

1− 1
ψ − β (Et [J(Nt+1, xt+1)

1−γ])
1−1/ψ
1−γ , and the error in the E functional equation

(21), E(Nt, xt) − Et [Mt+1 [Xt+1 −Wt+1 + (1− s) (κ0/q(θt+1) + κ1 − λ(Nt+1, xt+1))]]. These

errors, in the magnitude no higher than 10−13, are extremely small. As such, our nonlinear

algorithm does an accurate job in characterizing the competitive search equilibrium.

15Kopecky and Suen (2010) show that the Rouwenhorst (1995) method is more reliable and accurate than
other methods in approximating highly persistent first-order autoregressive processes.

16In practice, when we solve the model with a new set of parameters, we set the lower bound of Nt to be
0.4 to alleviate the burden of nonlinearity on the solver. After obtaining the model’s solution, we then apply
homotopy to gradually reduce the lower bound to 0.0365 or whatever level that Nt never hits in simulations.
Time-wise, with all the trial and error that comes with homotopy, solving the model with a parametrization
that admits strong nonlinearity can take almost a week. Indeed, we have encountered several specifications
and parametrizations of the model for which the projection solver has failed to converge at all.
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Figure C.1 : Errors in the J and E Functional Equations

Panel A: The J error Panel B: The E error
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D Labor Market Moments

We report a standard set of moments, as in Shimer (2005), using an updated sample. We

obtain seasonally adjusted monthly unemployment (thousands of persons 16 years of age and

older) from BLS, and seasonally adjusted help wanted advertising index from the Confer-

ence Board. The sample is from January 1951 to June 2006. We take quarterly averages of

the monthly series to obtain 222 quarterly observations. The average labor productivity is

seasonally adjusted real average output per person in the nonfarm business sector from BLS.

Hagedorn and Manovskii (2008) report all variables in log deviations from the HP-trend

with a smoothing parameter of 1,600. In contrast, we detrend all variables as the HP-filtered

cyclical component of proportional deviations from the mean with the same smoothing pa-

rameter. We do not take logs because vacancies can be zero in the model’s simulations when

the nonnegativity constraint on vacancy is binding. In the data, the two detrending methods

yield quantitatively similar results, which are close to Hagedorn and Manovskii’s. From Panel

A of Table D.1, the standard deviation of the V/U ratio is 0.26. The V/U ratio is procyclical

with a positive correlation of 0.30 with labor productivity. Vacancy and unemployment have
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a negative correlation of −0.91, indicating a downward-sloping Beveridge curve.

To evaluate the model’s fit with the labor market moments, we simulate 1,000 artificial

samples from the benchmark economy, each with 666 months. We take the quarterly av-

erages of the monthly unemployment, U , vacancy, V , and labor productivity, X , to obtain

222 quarterly observations for each series. We then apply the exactly same procedures as in

Panel A on the artificial data, and report the cross-simulation averages (as well as standard

deviations) for the model moments. From Panel B, the standard deviations of U and V in

the model are 0.15 and 0.12, respectively, which are close to those in the data. The model

implies a standard deviation of 0.17 for the V/U ratio, which is lower than 0.26 in the data.

The model also generates a Beveridge curve with a negative U-V correlation of −0.57, but

its magnitude is lower than −0.91 in the data. The correlation between the V/U ratio and

labor productivity is 0.99, which is higher than 0.30 in the data.

In Panels C and D, we repeat the same analysis as in Panel B but on the log-utility model

and the linear utility model, respectively. The labor market moments from these two alterna-

tive models are quantitatively close to those in the benchmark model. As such, although im-

portant for asset prices, recursive preferences are largely irrelevant for labor market moments.

E Additional Results on Time-varying Risk Premiums

Panel A of Figure E.1 plots the cross-correlations and their two standard-error bounds be-

tween Vt/Ut and future market excess returns, Rt+H −Rf
t+H , for H = 1, 2, . . . , 36 months in

the data. No overlapping observations are used. The panel shows that the correlations are

significantly negative for forecast horizons up to six months, consistent with the predictive

regressions in Table 3. Panel B reports the cross-correlations and their two cross-simulation

standard-deviation bounds from the model’s bootstrapped distribution. Consistent with the

data, the model predicts significantly negative cross-correlations between Vt/Ut and future

stock market excess returns at short horizons. However, although the cross-correlations are
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Table D.1 : Labor Market Moments

In Panel A, seasonally adjusted monthly unemployment (U , thousands of persons 16 years of
age and older) is from the Bureau of Labor Statistics. The seasonally adjusted help wanted
advertising index, V , is from the Conference Board. The series are monthly from January
1951 to June 2006 (666 months). Both U and V are converted to 222 quarterly averages
of monthly series, and θ = V/U . The average labor productivity, X, is seasonally adjusted
real average output per person in the nonfarm business sector from the Bureau of Labor
Statistics. All variables are in HP-filtered proportional deviations from the mean with a
smoothing parameter of 1,600. In Panels B to D, we simulate 1,000 artificial samples from
the respective model, with 666 monthly observations in each sample. We take the quarterly
averages of monthly U, V , and X to convert to 222 quarterly observations. We implement
the exactly same empirical procedures as in Panel A on these quarterly series, and report
the cross-simulation averages and standard deviations for all the model moments.

U V θ X U V θ X

Panel A: Data

Standard deviation 0.12 0.13 0.26 0.01
Quarterly autocorrelation 0.90 0.92 0.89 0.76

Correlation matrix −0.91 −0.80 −0.22 U
0.87 0.39 V

0.30 θ

Cross-simulation Cross-simulation
mean standard deviation

Panel B: The benchmark model with recursive preferences

Standard deviation 0.15 0.12 0.17 0.02 0.08 0.02 0.03 0.00
Quarterly autocorrelation 0.84 0.69 0.79 0.78 0.06 0.06 0.04 0.04

Correlation matrix −0.57 −0.65 −0.64 U 0.12 0.15 0.15
0.95 0.97 V 0.04 0.02

0.99 θ 0.02

Panel C: The log-utility model

Standard deviation 0.14 0.11 0.16 0.02 0.08 0.02 0.03 0.00
Quarterly autocorrelation 0.85 0.70 0.80 0.77 0.06 0.05 0.04 0.04

Correlation matrix −0.59 −0.67 −0.63 U 0.12 0.14 0.16
0.95 0.98 V 0.03 0.01

0.99 θ 0.02

Panel D: The linear utility model

Standard deviation 0.18 0.12 0.16 0.02 0.14 0.03 0.03 0.00
Quarterly autocorrelation 0.81 0.62 0.77 0.77 0.06 0.08 0.04 0.04

Correlation matrix −0.52 −0.63 −0.63 U 0.17 0.17 0.16
0.92 0.92 V 0.08 0.07

1.00 θ 0.00

51



Figure E.1 : Cross-Correlations between the V/U Ratio and Future Market Excess
Returns

We report the cross-correlations (in red) between labor market tightness, Vt/Ut, and future
market excess returns, Rt+H − Rf

t+H , in which H = 1, 2, . . . , 36 is the forecast horizon in
months, as well as their two standard-error bounds (in blue broken lines). In Panel A, Vt is
the seasonally adjusted help wanted advertising index from the Conference Board, and Ut is
the seasonally adjusted monthly unemployment (thousands of persons 16 years of age and
older) from the BLS. The sample is from January 1951 to June 2006. The market excess
returns are the CRSP value-weighted market returns in excess of one-month Treasury bill
rates. In Panel B, we simulate 1,000 artificial samples, each with 666 monthly observations.
On each artificial sample, we calculate the cross-correlations between Vt/Ut and Rt+H−Rf

t+H ,
and plot the cross-simulation averaged correlations (in red) and their two cross-simulation
standard-deviation bounds (in blue broken lines).

Panel A: Data Panel B: Model

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

Forecast horizon
0 10 20 30 40

−0.2

−0.1

0

0.1

0.2

Forecast horizon

insignificant at long horizons, the correlations decay more slowly than those in the data,

consistent with Panel B of Table 3.

F A Modified Model with Fixed Costs of Production

We show that in addition to the value of unemployment activities, a portion of the b param-

eter can be interpreted as fixed costs of production.

Let hNt, in which h > 0, be the (flow) fixed costs of production that the firm must pay
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each period. The production function becomes:

Yt = (Xt − h)Nt. (F.1)

Going through similar derivations in Appendix B yields the equilibrium wage rate:

Wt = η(Xt − h+ κtθt) + (1− η)b. (F.2)

Profits become:

Πt = Yt −WtNt = [(1− η)(Xt − h− b)− ηκtθt]Nt. (F.3)

As such, the magnitude of profits in the model with fixed costs of production (with b = 0.75

and h = 0.10) should be largely similar to that in the benchmark model (with b = 0.85).

The stock return equation becomes:

Rt+1 =
Xt+1 − h−Wt+1 + (1− s) [κ0/q(θt+1) + κ1 − λt+1]

κ0/q(θt) + κ1 − λt
, (F.4)

and the intertemporal job creation condition becomes:

κ0
q(θt)

+ κ1 − λt = Et

[
Mt+1

[
Xt+1 − h−Wt+1 + (1− s)

[
κ0

q(θt+1)
+ κ1 − λt+1

]]]
. (F.5)

All other aspects of the model remain identical to the benchmark model. The calibration is

also close to that of the benchmark model. The only difference is b = 0.75 and h = 0.10 in the

model with fixed costs of production, whereas b = 0.85 and h = 0 in the benchmark model.

Table F.1 reports that in the model with fixed costs of production the volatilities of

the consumption growth and the output growth are 3.76% and 4.31% per annum, which

are close to 3.63% and 4.13%, respectively, in the benchmark model. The autocorrelations

are virtually unchanged across the two models. The equity premium and the stock market
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Table F.1 : Basic Business Cycle and Financial Moments, The Model with Fixed
Costs of Production

We simulate 1,000 samples, each of which has 1,020 monthly observations. On each artificial
sample, we calculate the mean market excess return, E[R−Rf ], the volatility of the market
return, σR, as well as the mean, E[Rf ], and volatility, σR

f
, of the real interest rate. All these

moments are in annualized percent. We time-aggregate the first 984 monthly observations
of consumption and output into 82 annual observations in each sample, and calculate the
annual volatilities and autocorrelations of log consumption growth and log output growth.
We report the mean and the 5 and 95 percentiles across the simulations. The p-values are
the percentages with which a given model moment is larger than its data moment.

Benchmark The fixed costs of production model

Mean Mean 5% 95% p-value

σC 3.63 3.76 2.07 7.58 0.50
ρC(1) 0.18 0.18 −0.05 0.47 0.10
ρC(2) −0.14 −0.14 −0.34 0.09 0.05
ρC(3) −0.13 −0.13 −0.34 0.12 0.72
ρC(5) −0.07 −0.07 −0.28 0.14 0.15

σY 4.13 4.31 2.67 7.86 0.19
ρY (1) 0.19 0.18 −0.03 0.46 0.02
ρY (2) −0.13 −0.13 −0.32 0.08 0.02
ρY (3) −0.12 −0.12 −0.33 0.12 0.68
ρY (5) −0.08 −0.07 −0.28 0.13 0.89

E[R− Rf ] 5.70 5.43 4.54 6.31 0.76
E[Rf ] 2.90 2.95 2.56 3.18 1.00
σR 10.83 10.80 9.83 11.75 0.00

σR
f

1.34 1.37 0.83 2.22 0.11

volatility are 5.43% and 10.80%, which are close to 5.70% and 10.83%, respectively, in the

benchmark model. The mean and volatility of the interest rate are also close. Table F.2

reports long-horizon regressions of market excess returns on the labor market tightness in

the model with fixed costs of production. The results are quantitatively similar to those in

Panel B of Table 3 for the benchmark model.

Figure F.1 reports empirical cumulative distribution functions for the model with fixed

costs of production. The simulation design is identical to that in the benchmark model. We

see that similar to the benchmark model unemployment is left-skewed with a long right tail.

The mean unemployment rate is 8.49%, and the median is 7.29%. The 2.5 percentile, 5.87%,
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Table F.2 : Long-Horizon Regressions of Market Excess Returns on the V/U Ratio,
The Model with Fixed Costs of Production

We simulate 1,000 samples, each with 666 monthly observations. On each sample, we perform
long-horizon regressions of log excess returns on the stock market,

∑H
h=1Rt+3+h−Rf

t+3+h, in
which H is the forecast horizon in months. The regressors are two-month lagged values of the
V/U ratio. We calculate the ordinary least squares estimate of the slopes (Slope), t-statistics
(tNW ), and the adjusted R2s in percent. The t-statistics are adjusted for heteroscedasticity
and autocorrelations of 12 lags per Newey and West (1987). The table reports the cross-
simulation averages and standard deviations (in parentheses) for all the model moments.

Forecast horizon (H) in months

1 3 6 12 24 36

Slope −0.50 −1.46 −2.84 −5.33 −9.49 −12.81
(0.28) (0.82) (1.58) (2.94) (5.09) (6.65)

tNW −2.04 −2.14 −2.26 −2.52 −3.17 −3.72
(0.82) (0.87) (0.94) (1.12) (1.51) (1.83)

Adjusted R2 0.60 1.75 3.37 6.30 11.20 15.19
(0.44) (1.26) (2.37) (4.39) (7.59) (10.02)

is close to the median, but the 97.5 percentile, 19.20%, is far away. Accordingly, output,

consumption, and dividends are right-skewed with long left tails.

The disaster dynamics manifest as long right tails in the equity premium and the stock

market volatility. The median equity premium is 5.84% per annum, and the 2.5 percentile

is 2.24%. With small probabilities, the equity premium can go up to 24%. Similarly, the

median stock market volatility is 11.02%, and the 2.5 percentile is 6.84%. With small prob-

abilities, the volatility can go up to almost 38%.

Table F.3 reports the disaster moments per the Barro and Ursúa (2008) measurement

for the model with fixed costs of production. The results are again quantitatively similar to

those in Table 5 for the benchmark model. The consumption disaster probability is 3.42%,

which is close to 3.08% in the benchmark model. However, the GDP disaster probability is

somewhat higher than that in the benchmark model, 5.39% versus 4.66%. The average size

and average duration of disasters are basically unchanged.
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Figure F.1 : Empirical Cumulative Distribution Functions from the Stationary
Distribution, The Model with Fixed Costs of Production
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Table F.3 : Moments of Economic Disasters, The Model with Fixed Costs of
Production

All moments are from 1,000 simulations, each with 1,644 months. We time-aggregate these
monthly observations of consumption and output into 137 annual observations. On each
artificial sample, we apply the Barro and Ursúa (2008) peak-to-trough method to identify
economic crises as cumulative fractional declines in per capita consumption or GDP of at
least 10%. We report the averages as well as the 5 and 95 percentiles across the simulations.
The p-values are the percentages with which a given model moment is higher than its data
moment. The disaster probabilities and average size are all in percent, and the average
duration is in years. We also report the moments from the benchmark model.

Benchmark Fixed Costs of Production

Mean 5% 95% p-value

Panel A: Consumption disasters

Probability 3.08 3.42 0.76 6.48 0.36
Average size 20.21 20.39 11.58 41.90 0.26
Average duration 4.81 4.74 3.00 6.80 0.85

Panel B: GDP disasters

Probability 4.66 5.39 2.39 8.91 0.36
Average size 19.12 19.28 12.62 35.37 0.28
Average duration 4.51 4.42 3.25 5.83 0.87
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