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Abstract

Ad Exchanges are emerging Internet markets where advertisers may purchase display ad place-

ments, in real-time and based on specific viewer information, directly from publishers via a simple

auction mechanism. Advertisers join these markets with a pre-specified budget and participate in

multiple second-price auctions over the length of a campaign. This paper studies the competitive

landscape that arises in Ad Exchanges and the implications for publishers’ decisions. Our first main

contribution is to introduce the novel notion of a Fluid Mean Field Equilibrium (FMFE) that is

behaviorally appealing, computationally tractable, and in some important cases yields a closed-form

characterization. Moreover, we show that a FMFE approximates well the rational behavior of ad-

vertisers in large markets. Our second main contribution is to use this framework to provide sharp

prescriptions for key auction design decisions that publishers face in these markets, such as the

reserve price, the allocation of impressions to the exchange versus an alternative channel, and the

disclosure of viewers’ information. Notably, we show that proper adjustment of the reserve price is

key in (1) making profitable for the publisher to try selling all impressions in the exchange before

utilizing the alternative channel; and (2) compensating for the thinner markets created by greater

disclosure of viewers’ information.

Keywords. auction design, revenue management, ad exchange, display advertising, internet,

budget constraints, dynamic games, mean field, fluid approximation.

1 Introduction

The market for display ads on the internet, consisting of graphical content such as banners and videos

on web pages, has grown significantly in the last decade, generating about 11 billion dollars in the

United States in 2011 (Internet Advertising Bureau, 2012). This growth has been accompanied by

the emergence of alternative channels for the purchase of display ads. While traditionally, advertisers

would purchase display ad placements by negotiating long term contracts directly with publishers
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(webpage owners), spot markets for ad slots, called Ad Exchanges, have emerged (The Economist,

2011). Google’s DoubleClick, OpenX, and Yahoo!’s Right Media are examples of such exchanges.

An Ad Exchange is a platform that operates as an intermediary between online publishers and

advertisers. When a user visits a web page (e.g., the New York Times), the publisher posts the ad

slot in the exchange together with potentially some user information known to her; e.g., the user’s

geographical location and her cookies. Advertisers (or bidders) interested in advertising on the site

post bids as a function of their targeting criteria and the user information provided by the publisher.

Then, an auction is run to determine the winning advertiser and the ad to be shown to the user.

The latter process happens in milliseconds, between the time a user requests a page and the time

the page is displayed to her. The publisher repeatedly offers slots to display advertisements on her

web-site as users arrive; typically, a given publisher runs millions of these auctions per day. On its

part, advertisers participate in the exchange with the objective of fulfilling marketing campaigns. In

practice, such campaigns are commonly based on a given pre-determined budget and extend for a

fixed amount of time, over which advertisers participate in a large volume of auctions. Given the large

number opportunities and the time scale on which decisions are made, bidding is fully automated.

See Muthukrishnan (2009) for a more detailed description of Ad Exchanges.

The presence of this new channel presents a host of new strategic and tactical questions for publish-

ers. How should the allocation of impressions be divided between bilateral contracts and exchange(s)?

How should Ad Exchange auctions be designed to maximize profits given that advertisers are budget

constrained? What is the role of user information and to what extent should it be disclosed? In this

paper, we propose a framework that captures some key characteristics of an exchange, through which

one may start quantifying the central trade-offs in these markets and answering such questions. Our

first main contribution is to introduce a novel equilibrium concept for advertisers’ competition in an

exchange which is behaviorally appealing, computationally tractable, and in some important cases

yields closed-form characterizations. Our second main contribution is to use this framework to provide

prescriptions and insights for key auction design decisions that publishers face. We explain these next.

1.1 Main Contributions

Our model incorporates advertisers’ budget constraints that are prevalent in these markets. These

constraints link the different auctions over time, and therefore advertisers typically require dynamic

bidding strategies to optimize the allocation of budget to incoming impressions in order to maximize

cumulated profits over the length of the campaign. Profit is measured as the difference between the

sum of the values generated by the impressions won during the length of their campaign minus the

expenditures. In many cases, advertisers have similar targeting criteria, and bid for the same inventory

of ads. Thus, the dynamic bidding strategy an advertiser adopts impacts the competitive landscape for
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other advertisers in the market. Moreover, the publisher’s auction design decisions, such as the reserve

price, also impact these interactions. Thus motivated, we formulate our Ad Exchange model as a game

among advertisers and the publisher.1 First, the publisher defines the parameters of a second-price

auction that become common knowledge. Then, given the auction format, advertisers compete in a

dynamic game. In order to quantify the impact of auction design parameters, we focus first on the

competitive landscape that emerges for fixed auction decisions.

An important challenge in our analysis is solving for the equilibrium of the dynamic game among

advertisers induced by the auction rules. At one extreme of agent sophistication, a notion of equilibrium

that one may consider is Perfect Bayesian Equilibrium (PBE) in which advertisers maintain priors on

the states of all other bidders, and update them accordingly using Bayes’ rule. Even if priors could be

succinctly updated, bidders are left with the problem of computing a best response, which is a high-

dimensional dynamic program. Such an approach presents two main drawbacks. First, the analysis of

the resulting game is, in most cases, intractable from both analytical and computational stand-points.

Second, such sophistication and informational requirements on the part of agents is highly unrealistic.

Fluid Mean Field Equilibrium. The first contribution of this paper is a novel notion of equilib-

rium that is tractable and provides a good approximation to the strategic interactions among budget-

constrained bidders in an Ad Exchange. Our new notion of equilibrium combines two different ap-

proximations to address the limitations in PBE. First, we consider a Mean Field approximation to

relax the informational requirements of agents. The motivation behind the mean field approximation

is that, when the number of competitors is large, there is little value in tracking the specific actions of

all agents and one may rely on some aggregate and stationary representation of the competitors’ bids.

This type of approximations have appeared in other auction and industrial organization applications

(see, e.g., Iyer et al. (2011); Weintraub et al. (2008)). Moreover, in Ad Exchange markets the number

of participants is typically large. Second, borrowing techniques from the revenue management litera-

ture (see, e.g., Gallego and van Ryzin (1994)), we consider a stochastic fluid approximation to handle

the complex dynamics of the advertisers’ control problem. Such approximations are suitable when the

number of opportunities is large and the payment per opportunity is small compared to the budget;

hence, it also fits well in the context of Ad Exchanges.

Using these two approximations, we define the notion of a Fluid Mean Field Equilibrium (FMFE). A

FMFE is an appealing equilibrium concept for Ad Exchanges from a behavioral perspective. Moreover,

we justify the use of the FMFE as an equilibrium concept in this setting by proving that the FMFE

provides a good approximation to the rational behavior of agents in large markets.

Notably, when a second-price auction is conducted, the resulting FMFE strategy has a simple, yet

1In practice, Ad Exchanges may be operated by third-parties; for simplification, in this paper we assume that the
publisher and the party running the exchange constitute a single entity.
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appealing, form: an advertiser needs to shade her values by a constant factor. Intuitively, when budgets

are tight, advertisers shade their bids, because there is an option value for future good opportunities.

We leverage the latter characterization to analyze properties of FMFE. In particular, we show that

an FMFE always exists and provide a broad set of sufficient conditions that guarantee its uniqueness.

We also provide a characterization for FMFE that suggests a simple and efficient algorithm for its

computation. Lastly, we derive a closed-form characterization of the strategies under the FMFE, and

of the resulting competitive landscape in the case of homogeneous bidders, i.e., when all advertisers

have the same budget and campaign length. Such closed forms for equilibria of dynamic games are

remarkably rare and one may significantly leverage such a result when studying the publisher’s problem.

Auction Design. Given our characterization of the outcome of the interactions among advertisers,

we study the auction design problem for a publisher that maximizes expected profits. In particular, we

analyze the impact of three different decision variables on the publisher’s profits when running second-

price auctions: the reserve price, the allocation of impressions, and the disclosure of information. When

solving her optimization problem the publisher trades-off the revenues extracted from the auction with

the opportunity cost of selling the impressions through an alternative channel. In addition, she needs to

consider that changing the auction parameters may change the FMFE strategies played by advertisers.

We start by analyzing the model with homogeneous bidders, for which we can prove analytical

results. First, we provide a complete characterization of the optimal reserve price. Second, we derive

the optimal rate of impressions to allocate to the exchange (vis-à-vis collecting the opportunity cost

upfront). We show that when the reserve price is fixed, profits initially increase with the allocation of

impressions, but it is not necessarily optimal to send all impressions to the exchange. This result stems

from the fact that beyond a certain level, the publisher may not extract further revenues because of

the budget constraints, and allocating more impressions increases the opportunity cost. When jointly

optimizing over the rate of impressions and the reserve price, however, we establish that the publisher

is always better off increasing the allocation of impressions as much as possible. In this case, because

the reserve price optimization considers the alternative channel, the exchange becomes a “free option”

that is always worth testing.

When the publisher posts an impression in the exchange she can decide which user information to

disclose to the advertisers. On the one hand, more information enables advertisers to improve targeting,

which results in higher bids conditional on participating in an auction. On the other hand, as more

information is provided, fewer advertisers match with each user, resulting in thinner markets, which

could decrease the publisher’s profit. We apply our framework to a stylized model for information

disclosure, and show that if the publisher reacts to thinner markets by setting an appropriate reserve

price, then disclosing more information will always increase the publisher’s profits; an appropriately

set reserve price allows to extract surplus even in thin markets.
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The results for homogeneous advertisers are of independent interest. Moreover, they provide in-

sights that may be valid for the more general case with heterogeneous bidders, i.e., when advertisers

have different budgets and campaign lengths. More specifically, the structure of the optimal reserve

price suggests how the publisher should balance extracting revenues from budget-constrained bidders

with minimizing the opportunity cost. In addition, the last two results highlight the importance of

performing reserve price optimization when adjusting the other two auction design levers, namely, the

allocation of impressions and the level of users’ information disclosure. We also performed numerical

experiments to check for the robustness of the previous results in the model with heterogeneous bidders.

Overall, our results provide sharp insights on the design of Ad Exchange markets and on the

publisher’s profit maximization problem. Notably, the structure of the optimal auction design decisions

are simple and intuitive, and may have implications on the design of such auctions in practice. At the

same time, this work contributes to various streams of literature. By accounting for advertisers’ budget

constraints and the resulting inter-temporal dependencies and dynamic bidding strategies they induce,

we contribute to the internet advertising literature in particular, and more generally, to the literature

on auction design in dynamic settings. In fact, we expect that FMFE may have additional applications

beyond the one presented in this paper. This work also contributes to the revenue management

literature; the publisher’s optimization of impression allocation and selling mechanism are core revenue

management problems and so is, in some way, the advertisers’s scarce resource allocation problem.

1.2 Related Work

Our work contributes to the growing literature on display advertising, and in particular on that with

Ad Exchanges. From the publisher’s perspective, various studies analyze display ad allocation with

both guaranteed contracts and spot markets. See, e.g., McAfee et al. (2009), Balseiro et al. (2011),

Yang et al. (2010) and Alaei et al. (2009). These papers, however, take the actions of the advertisers as

exogenous in the auction design. Chen (2011) employs a mechanism design approach to characterize the

optimal dynamic auction for the publisher in the presence of guaranteed contract constraints. In this

work, however, the publisher faces short-lived advertisers and budget constraints are not considered.

Vulcano et al. (2002) considers a related problem in the context of a single-leg revenue management

problem. From the advertiser’s perspective, Ghosh et al. (2009) study the design of a bidding agent

that implements a campaign in the presence of an exogenous market.

Regarding the disclosure of information, Levin and Milgrom (2010) discuss how targeting can

increase efficiency by improving the match between users and advertisers, but at the same time reduce

publisher’s revenues by creating thinner market. With this motivation, Celis et al. (2011) introduce

a new randomized auction mechanism that experimentally performs better than an optimized second-

price auction in markets that become thin due to targeting. This work, however, considers a one shot
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auction and does not take into account the dynamics introduced by budget constraints.

There is some body of literature on display advertising from a revenue management angle that fo-

cuses exclusively on guaranteed contracts (see, e.g., Araman and Fridgeirsdottir (2011), Fridgeirsdottir

and Najafi (2010), Roels and Fridgeirsdottir (2009), and Turner (2012)). In the related area of TV

broadcasting, Araman and Popescu (2010) study the allocation of advertising space between forward

contracts and the spot market when the planner faces supply uncertainty.

Our work contributes to recent work in mean-field approximations to dynamic games. Weintraub

et al. (2008) and Adlakha et al. (2011) use the related notions of oblivious equilibrium and mean field

equilibrium, respectively, to approximate Markov perfect equilibrium in dynamic oligopoly models that

are commonly studied in industrial organization. More related to our work is Iyer et al. (2011) that

use a mean-field notion of equilibrium to study dynamic repeated auctions in which bidders learn

about their own private values over time. Our mean field approximation build on theirs. However,

in our setting dynamics are driven by budget constraints as opposed to learning. Moreover, our

fluid approximation to the bidders’ control problem enables us to prove sharper results regarding the

equilibrium characterization and auction design. Closest to our paper is the very recent study of

Gummadi et al. (2012) that, in simultaneous and independent work, also study budget-constrained

bidders in repeated auctions and define a related mean field equilibrium concept. However, they do

not provide approximation nor auction design results, which are a key part of our contribution.

Our work is related to various streams of literature in auctions. First, previous work has studied

auctions with financially constrained bidders in static one-shot settings (see, e.g, Laffont and Robert

(1996), Che and Gale (1998), Che and Gale (2000), Maskin (2000), and Pai and Vohra (2011)). In §5
we show that in our dynamic model we obtain drastically different results to some of the main results

in that literature. In addition, while our focus is on the impact of budget constraints on second price

auctions, our work is somewhat related to the recent literature in optimal dynamic mechanism design

(see Bergemann and Said (2010) for a survey). Finally, our work relates to previous papers in repeated

auctions, such as Jofre-Bonet and Pesendorfer (2003), in which similarly to our model, bidders shade

their bids to incorporate the option value of future auctions. However, in contrast to our work, the

latter paper assumes Markov perfect equilibrium behavior in an empirical setting.

Our work also relates from both methodological and approach standpoints to some stream of

work in revenue management. The single agent fluid approximation we use and some of the intuition

underlying it is related to that of, e.g., Gallego and van Ryzin (1994). Building on the latter, Gallego

and Hu (2011) focusing on price competition, use a notion of fluid, or open-loop, equilibrium. Other

papers studying on dynamic games in revenue management (all focusing on price competition) include

Farias et al. (2011), de Albéniz and Talluri (2011), and Dudey (1992).
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2 Model Description

We study a continuous-time infinite horizon setting in which users arrive to an online publisher’s web-

page according to a Poisson process {N(t)}t≥0 with intensity η. We index the sequence of arriving

users by n ≥ 1, and we denote the sequence of arrival times by {tn}n≥1. When a user requests the

web-page, the publisher may display one advertisement; an event referred to as an impression. The

publisher may decide to send the impression to an Ad Exchange, where an auction among potentially

interested advertisers is run to decide which ad to show to the user. The exchange determines the

winning bid via a second-price auction with a reserve price, and returns a payment to the publisher.

The rules of the auction and the characteristics of the users’ arrival process are common knowledge.

Advertisers. Advertisers arrive to the exchange according to a Poisson process {K(t)}t≥0 with

intensity λ. We index the sequence of arriving advertisers by k ≥ 1, and denote by {τk}k≥1 the arrival

times. Advertiser k is characterized by a type vector θk = (bk, sk, αk, γk) ∈ R4. The first component of

the type, bk, denotes the budget and the second component, sk, denotes the campaign length. That is,

the kth advertiser’s campaign takes place over the time horizon [τk, τk + sk) and her total expenditure

cannot exceed bk. Once the advertiser leaves the exchange she never comes back.

When the publisher contacts the exchange she submits some partial information about the user

visiting the website, that for example, could include cookies. This information, in turn, may heteroge-

neously affect the value an advertiser perceives for the impression, and the amount she is willing to bid.

The last two components of the type, αk and γk, determine the targeting criteria and the valuation

distributions as we now explain. When the nth user arrives, the advertisers in the exchange observe

the user information disclosed by the publisher, and determine whether they will participate or not in

the auction based on their targeting criteria. We assume that the kth advertiser matches a user with

probability αk independently and at random (both across impressions and advertisers). Conditional

on a match, advertisers have independent private values for an impression. In particular, all values for

advertiser k are independent and identically distributed random variables with a continuous cumulative

distribution Fv(·; γk), parametrized by γk ∈ R. The distributions have compact support [V , V̄ ] ⊂ R+

and continuously differentiable density.2 Later, we will explain how the publisher can affect the value

of αk and the distribution parameter γk by changing her user information disclosure policy.

At the moment of arrival, an advertiser’s type is drawn independently from a common knowledge

distribution with support Θ, a finite subset of the strictly positive orthant R4
++. This distribution

characterizes the heterogeneity among advertisers in the market.

Advertisers have a quasilinear utility function given by the difference between the sum of the

2By assuming private values, we will ignore the effects of adverse selection and cherry-picking in common value auctions
when some advertisers have superior information. See Levin and Milgrom (2010) and Abraham et al. (2012) for work
that discusses and analyzes this setting.
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valuations generated by the impressions won minus the expenditures corresponding to the second price

rule over all auctions they participate during the length of their campaign. The objective of each

advertiser is to maximize her expected utility subject to her budget constraint.

Publisher. On the supply side, the publisher has an opportunity cost for selling her inventory of

impressions in the exchange; that is, the publisher obtains some fixed amount c > 0 for each impression

not won by some advertiser in the exchange. The publisher’s payoff is given by the long-run average

profit rate generated by the auctions, where the profit is measured as the difference between the

payment from the auction and the lost opportunity cost c when the impression is won by an advertiser

in the exchange. The publisher’s objective is to maximize its payoff. We analyze three levers that the

publisher may use to do so: (i) the reserve price r to set for the auctions, (ii) the volume of ads to send

to the exchange given the positive external opportunity cost c, and (iii) the amount of information she

discloses to the advertisers that we will represent with a real number ι.3

Notation. Given a random variable X, we denote a realization x with lower case, its sample space

X with bold capitals, the cumulative distribution function by Fx(·), and the law by Px{·}.
Note. Due to space considerations only selected proofs are presented in the main appendix. All

other proofs are presented in a supplementary appendix.

3 Equilibrium Concept

Given the auction design decisions of the publisher, the advertisers participate in a game of incomplete

information. Moreover, because the budget constraints couple advertisers’ decisions across periods, the

game is dynamic and does not reduce to a sequence of static auctions.

A standard solution concept used for dynamic games of incomplete information is that of weak

perfect Bayesian equilibrium (WPBE) (Mas-Colell et al., 1995). Roughly speaking, in such a game,

a pure strategy for advertiser k is a mapping from histories to bids, where the histories represent past

observations. A strategy specifies, given a history and assuming the advertiser participates in an auction

at time t, an amount to bid. A strategy profile in conjunction with a belief system constitute a WPBE if

the following holds. First, given a belief system and the competitors’ strategies, an advertiser’s bidding

strategy maximizes expected future payoffs. Second, beliefs must be consistent with the equilibrium

strategies and Bayes’ rule whenever possible.

WPBE and commonly used refinements, such as perfect Bayesian equilibrium and sequential equi-

librium, require advertisers to hold beliefs about the entire future dynamics of the market, including

the future market states. With more than few competitors in the market this imposes a very strong

rationality assumption over advertisers as these belief distributions are high-dimensional. Moreover,

3To simplify notation, we will not make this dependence explicit until needed.
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to find a best response, advertisers need to solve a dynamic programming problem that optimizes over

history-dependent strategies. This optimization problem can be high-dimensional and be intractable

both analytically and computationally. Hence, solving for WPBE for most markets of interest is not

possible. More importantly, WPBE imposes informational requirements and a level of sophistication

on the part of agents that seems highly unrealistic. This motivates the introduction of alternative

equilibrium concepts. After some background in §3.1, we introduce such an alternative in §3.2.

3.1 Mean Field and Fluid Approximation

When selecting an amount to bid, an advertiser needs to form some expectation of the distribution

of bids she will compete against. There might be various possible bases for such an expectation as

a function of the sophistication of the advertiser and the type of information she would have access

to. In practice, the number of advertisers in an exchange is often large, in the order of hundreds or

even thousands. The first approximation we make is based on the premise that, given a large number

of bidders in the market, the distribution of competitors’ bids is stationary and that these random

quantities are uncorrelated among periods. Moreover, the bids of any particular advertiser do not

affect this distribution. It is common that in these markets, auctioneers provide a “bid landscape”

based on aggregated historical data that inherently assumes stationarity, at least for some significant

time horizon. This information is commonly used by advertisers to set their bids, and therefore, our

assumption about the distribution of competitors’ bids may naturally arise in practice (Ghosh et al.,

2009; Iyer et al., 2011).

To win an auction, an advertiser competes against all other bidders and against the reserve price r.

We denote by D the steady-state maximum of the “competitors’ bids”, where we assume the publisher

is one more competitor that submits a bid equal to r. Assume for a moment that D is i.i.d. across

different auctions and distributed according to a c.d.f Fd(·). (Note that Fd(·) will be endogenously

determined in equilibrium in §3.2).

In this setting, the advertiser’s dynamic bidding problem in the repeated auctions can be casted

as a revenue management-type stochastic dynamic programming problem, in which bidding decisions

across periods are coupled through the budget constraint. However, the resulting Hamilton-Jacobi-

Bellman is a partial differential equation that, in general, does not have a closed-form solution. To get

a better handle on the bidder’s dynamic optimization problem we introduce a second level of approxi-

mation motivated by the fact that a given advertiser has a very large number of bidding opportunities

(campaigns span for weeks or months, and thousands of impressions arrive per day). In such an envi-

ronment, the advertiser’s stochastic dynamic programming problem can be well approximated through

a stochastic fluid model. In particular, the approximation we focus on is predicated on assuming that

bidders solve a control problem in which the budget constraint need only be satisfied in expectation,
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and bidding strategies ignore the individual state and are only dependent on the actual realization of

the bidder’s value. This can be shown to provide advertisers with provably good policies when both

the number of impressions and budgets are large, so the number of bidding opportunities over the

campaign length also grows large.

Now, the control problem, for a bidder with type θ = (b, s, α, γ) is one of finding a fluid-based

bidding strategy βF
θ (v;Fd) that places a bid depending solely on her value v for the impression. Notice

that a bidder with total campaign length s observes, in expectation, a total number of αηs impressions

during her stay in the exchange. By conditioning on the impressions’ arrival process, and using our

assumption of the stationarity of the maximum bids and the valuations, the bidder’s optimization

problem is given by

JF
θ (Fd) = max

w(·)
αηsE

[
1{D ≤ w(V )}(V −D)

]
(1a)

s.t. αηsE
[
1{D ≤ w(V )}D

]
≤ b, (1b)

where the expectation is taken over both the maximum bids D and the valuations V , which are

independently distributed according to Fd(·) and Fv(·; γ) respectively. Note that the payments in

the bidders’ problem are consistent with a second-price rule. The bidder optimizes over a bidding

strategy that maps its own valuation to a bid; hence, the resulting problem is an infinite-dimensional

optimization problem. The next result provides, however, a succinct characterization of an optimal

fluid-based bidding strategy.

Proposition 1. Suppose that E[D] < ∞. An optimal bidding strategy that solves (1) for type θ is

given by

βF
θ (v;Fd) =

v

1 + µ∗θ
,

where µ∗θ is an optimal solution of the dual problem infµ≥0 Ψθ(µ;Fd) with Ψθ(µ;Fd) = αηsE
[
V − (1 +

µ)D
]+

+ µb.

The optimal bidding strategy has a simple form: an advertiser of type θ needs to shade her values

by the constant factor 1 + µ∗θ, and this factor guarantees that the advertiser’s expenditure does not

exceed the budget. In the previous expression the multiplier µ∗θ is the shadow price of the budget

constraint and gives the marginal utility in the advertiser’s campaign of one extra unit of budget.

Intuitively, when budgets are tight, advertisers shade their bids, because there is an option value for

future good opportunities. When budgets are not tight, the optimal dual multiplier is equal to zero

and advertisers bid truthfully. The proof of the result relies on an analysis of the dual of problem (1).
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Note that (1) is not a convex program and hence standard strong duality arguments do not apply. As

a result, the proof establishes from first principles that no duality gap exists in the present case.

3.2 Fluid Mean Field Equilibrium

We now define the dynamics of the market as a prelude to introducing the equilibrium concept we

focus on. At any point in time there can be an arbitrary number of advertisers in the exchange, and

these dynamics are governed by the patterns of arrivals and departures. In particular, the number

of advertisers in the exchange behaves as an M/G/∞ queue. We denote by Q(t) the set of indices

of the advertisers in the exchange at time t, and by Q(t) = |Q(t)| the total number of advertisers in

the system. The market state at time t is given by the set of bidders in the exchange, together with

their individual states and types, Ω(t) = {Q(t), {bk(t), sk(t), θk}k∈Q(t)}, where we denote by bk(t) and

sk(t) the kth advertiser remaining budget and residual time in the market by time t. When advertisers

implement fluid-based strategies the market state encodes all the information relevant to determine

the evolution of the market, and the process Ω = {Ω(t)}t≥0 is Markov.

Suppose that all bidders conjecture a common distribution of the maximum bid they compete

against, and implement the optimal fluid strategy described in the preceding section. These strategies

induce, through the market dynamics, a new distribution of bids. In equilibrium we require a consis-

tency check: the resulting steady-state distribution of the maximum bid coincides with the one that

was originally postulated.

A difficulty with the consistency check is that the number of active bidders, those that match the

target criteria and have remaining budgets, depends on the market dynamics. In particular, the budget

dynamics depend on who wins and how much the winner pays in each auction. Hence, in principle,

characterizing the resulting steady-state distribution of the maximum bid of active competitors’ (that

have remaining budgets) is complex. However, it is reasonable to conjecture that, when the number of

opportunities during the campaign length is large, rational advertisers would deplete their budgets close

to the end of their campaign with high probability. For analytical tractability we impose that, in our

equilibrium concept, any bidder currently in the exchange that matches the targeting criteria, without

regard of her budget, gets to bid. Under this assumption, the number of bidders in an auction equals the

number of advertisers matching the targeting criteria, denoted by M(t), which is just an independent

sampling from the process Q(t). We rigorously justify that this additional layer of approximation is

asymptotically correct in large markets (see Appendix B and Balseiro et al. (2012)).4

Since arrival and departures of advertisers are governed by an M/G/∞ queue and campaign lengths

4We note that an important difference between our FMFE and the related equilibrium concept proposed in parallel
by Gummadi et al. (2012) is that they do not impose this additional layer of approximation. We show that this layer of
approximation is asymptotically correct. Furthermore, it plays a key role to obtain tractability in our analysis.
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are bounded, it is not hard to show that under fluid-based strategies the market process Ω is Harris

recurrent, so it is ergodic and admits a unique invariant steady-state distribution (see, e.g., Asmussen

(2003) p. 203). Let
(
M̂, {Θ̂k}M̂k=1

)
be a random vector that describes the number of matching bidders,

together with their respective types when sampling a market state according to the invariant distribu-

tion. Notice that advertisers with longer campaign lengths and higher matching probability are more

likely to participate in an auction, and thus the law of a type sampled from the invariant distribution

does not coincide with the law of the types in the population. Indeed, by exploiting the fact that

arrival-time and service-time pairs constitute a Poisson random measure on the plane (see, e.g., Eick

et al. (1993)), one can show that M̂ is Poisson with parameter E[αΘλsΘ], and that each component

of the vector of types is independently and identically distributed as PΘ̂{θ} = αθsθ
E[αΘsΘ]PΘ{θ} for each

type θ ∈ Θ, and independent of M̂ .5

For a fluid-based strategy profile β = {βθ(·) : θ ∈ Θ} with βθ : [V , V̄ ] → R, we denote by Fd(β)

the distribution of the following random variable

max

({
βΘ̂k

(VΘ̂k
)
}M̂
k=1

, r

)
, (2)

which represents the steady-state maximum bid. Note that here Vθ are independent valuations sampled

according to Fv(·; γθ). We are now in a position to formally define the notion of a Fluid Mean Field

Equilibrium (FMFE).

Definition 1 (Fluid Mean Field Equilibrium). A fluid-based strategy profile β constitutes a FMFE if

for every advertiser’s type θ ∈ Θ, the bidding function βθ is optimal for problem (1) given that the

distribution of the maximum bid of other advertisers is given by Fd(β) (equation (2)).

Essentially a FMFE is a set of bidding strategies such that (i) these strategies induce a given

competitive landscape as represented by the steady-state distribution of the maximum bid, and (ii)

given this landscape, advertisers’ optimal fluid-based bidding strategies coincide with the initial ones.

We focus on symmetric equilibria in the sense that all bidders of a given type adopt the same strategy.

Note that in the FMFE, upon arrival to the system an advertiser is assumed to compete against the

market steady-state maximum bid D.6 Finally, for a given set of auction design parameters (r, η, ι),

we denote by CFMFE(r, η, ι) the set of corresponding FMFEs.

We introduced FMFE by heuristically arguing that it should be a sensible equilibrium concept for

large markets when the number of bidding opportunities per advertiser are also large. In Theorem

6 in Appendix B, we show that when all advertisers implement the FMFE strategy, the relative

5For a type θ ∈ Θ we denote, with some abuse of notation, the corresponding budget by bθ, the campaign length by
sθ, the matching probability by αθ, and the valuation parameter by γθ. Additionally, we denote by Θ a random variable
distributed according to the law of types in the population.

6Note that by the PASTA property of a Poisson arrival process this assumption is in fact correct.
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profit increase of any unilateral deviation to a strategy that keeps track of all information available

to the advertiser becomes negligible as the scale of the market increases. This provides a theoretical

justification for using FMFE as an approximation of advertisers’ behavior.

3.3 Publisher’s Problem

We model the grand game played between the publisher and advertisers as a Stackelberg game in which

the publisher is the leader and the advertisers the followers. In particular, the publisher first selects

the reserve price in the second-price auction r, the rate of impressions η, and the extent of information

disclosed ι. Then, after observing these design parameters, the advertisers react and play the induced

dynamic game among them. In our analysis we assume that the solution concept for the game played

between advertisers is that of FMFE.

The publisher’s optimization problem may be written as

max
r,η,ι

ηE
[
1{βΘ̂(VΘ̂)1:M̂ ≥ r}

(
max{βΘ̂(VΘ̂)2:M̂ , r} − c

)]
(3a)

s.t. β ∈ CFMFE(r, η, ι) (3b)

where βΘ̂(VΘ̂)1:M̂ is the highest bid among the bids
{
βΘ̂k

(VΘ̂k
)
}M̂
k=1

submitted in the auction and

βΘ̂(VΘ̂)2:M̂ the second-highest bid. The publisher’s problem amounts to maximizing her long run

average profit rate (3a) considering the opportunity cost of the alternative channel, subject to the

constraint that β is an FMFE. For given (η, r, ι), a priori, a FMFE may not exist or even if one exists

it may not be unique. Hence, the optimization problem above is not well posed in general. However,

we will prove in the coming sections that a FMFE exists and is unique for an important class of models.

Note that both r and η directly affect the publisher’s objective. In addition, it is clear from

equations (1), that they could affect bidders’ FMFE strategies. Furthermore, recall that ι affects the

matching probabilities αk(ι) and the valuation parameters γk(ι). Hence, changing ι also directly affects

the publisher’s objective and the FMFE being played. In the next sections, we make these dependencies

more explicit and analyze the optimal selection of each of those design decisions.

4 Fluid Mean Field Equilibrium Characterization

In this section we prove the existence, provide conditions for uniqueness, and characterize the FMFE.

Proposition 1 will significantly simplify our analysis, because it allows one to formulate the equilibrium

conditions in terms of a vector of multipliers instead of bidding functions. By doing so, the problem of

finding the equilibrium strategy function for a given type will be reduced to finding a single multiplier.
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4.1 Equilibrium Existence and Sufficient Conditions for Uniqueness

Consider fixed values of the auction parameters (r, η, ι). We first prove the existence of a FMFE. Recall

from Proposition 1 that, in an optimal fluid bidding strategy, advertisers of type θ shade their bids

using a fixed multiplier µθ. In the following we denote by µ = {µθ}θ∈Θ a vector of multipliers in R|Θ|+

for the different advertiser’s types. Given a postulated profile of multipliers µ, let Fd(µ) denote the

steady-state distribution of the maximum bid and let Ψθ(µ;µ) , Ψθ(µ;Fd(µ)) be the dual objective

for one θ-type advertiser when all other bidders adopt a strategy given by the vector µ (including those

of her own type). In the dual formulation, a vector of multipliers µ∗ constitutes a FMFE if and only

if it satisfies the best-response condition

µ∗θ ∈ arg min
µ≥0

Ψθ(µ;µ∗), for all types θ ∈ Θ. (4)

One may establish that the system of equations (4) always admits a solution to obtain the following.

Theorem 1. There always exists an FMFE.

The proof shows that the dual strategy space can be reduced to a compact set, and that the dual

objective function is jointly continuous in its arguments, and convex in the first argument. Then, a

standard result that relies on Kakutani’s Fixed-Point Theorem implies existence of an FMFE.

We now turn to sufficient conditions for uniqueness. Let G : R|Θ|+ ×R+ → R|Θ|+ be a vector-valued

function that maps a profile of multipliers and a reserve price to the steady-state expected expenditures

per auction of each bidder type. The expected expenditure of a θ-type bidder in a second-price auction

when advertisers implement a profile of multipliers µ is given by

Gθ(µ, r) , E [1{(1 + µθ)D ≤ V }D] ,

where the maximum competing bid is given by D = max
((
VΘ̂/

(
1 + µΘ̂

))
1:M̂

, r
)

7.

Assumption 1 (P-matrix). The Jacobian of −G with respect to µ is a P-matrix for all µ in R|Θ|+

A matrix is P-matrix if all its principal minors are positive (Horn and Johnson, 1991, p.120).

Assumption 1 can be shown to hold for various cases of interest. For example, it is easy to see that it

always holds for the case of homogeneous advertisers, i.e., when the space of types Θ is a singleton.

In Appendix C, we provide examples of settings with heterogeneous advertisers in which it also holds.

The next theorem shows that the equilibrium is unique under the P-matrix assumption.

7Note that consistent with the FMFE assumption and the PASTA property, the bidder competes against the market
steady-state maximum bid.
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Theorem 2. Suppose Assumption 1 holds. Then, there is a unique FMFE of the form βθ(v) =

v/(1 + µθ), θ in Θ.

We prove the result by formulating the FMFE conditions as a Non-linear Complementarity Prob-

lem (NCP) as presented in Corollary 1 below, and employing a Univalence Theorem to show that the

expected expenditure mapping is injective (Facchinei and Pang, 2003a). Moreover, it is possible to

establish under further mild regularity conditions that any set of continuous increasing bidding func-

tions that constitute an FMFE necessarily yield the same outcome (in terms of auctions’ allocations

and payments) as that of the FMFE in Theorem 2. In the rest of the paper, we focus on the simple

and intuitive FMFE strategies that can be described by a vector of dual multipliers.

4.2 Equilibrium Characterization

A direct corollary of the earlier results and their proofs yields the following succinct characterization.

Corollary 1. Any FMFE characterized by a vector of multipliers µ∗, such that βθ(v) = v/(1 +µ∗θ) for

all v ∈ [V , V̄ ] and θ ∈ Θ, solves

µ∗θ ≥ 0 ⊥ αθηsθGθ(µ
∗, r) ≤ bθ, ∀θ ∈ Θ,

where ⊥ indicates a complementarity condition between the multiplier and the expenditure, that is, at

least one condition should be met with equality.

Note that the expected expenditure for a bidder of type θ over its campaign when bidders use

a vector of multipliers µ is given by αθηsθGθ(µ, r), because on average she faces ηsθ auctions and

participates in a fraction αθ of them. Intuitively, the result states that, in equilibrium, advertisers of

a given type may only shade their bids if their total expenditure over the course of the campaign (in

expectation) is equal to their budget. If, in expectation, advertisers have excess budget at the end of

a campaign, then, their multiplier is equal to zero and they should bid truthfully. This equilibrium

characterization lends itself for tractable algorithms to compute FMFE, because the strategy of each

advertiser type is determined by a single number that satisfies the complementary conditions above.

See, for example, Chapter 9 of Facchinei and Pang (2003b) for a discussion of numerical algorithms for

this kind of NCPs.

We conclude this subsection by refining the result for the case of homogeneous bidders, in which

one can provide a quasi-closed form characterization for FMFE. Suppose that Θ is a singleton. In this

case, we shall see that Assumption 1 always holds and there exists a unique FMFE. Let

G0(r) = Gθ(0, r) (5)
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denote the steady-state unconstrained expected expenditure-per-auction of a single bidder for a second

price auction with reserve price r when all advertisers (including herself) bid their own values. Note

that the expected expenditure for a bidder over its campaign when all bidders are truthful is given by

αηsG0(r). This quantity plays a key role in the FMFE characterization.

Proposition 2. Suppose Θ is a singleton. Then a Fluid Mean Field Equilibrium exists and is unique.

In addition, the equilibrium may be characterized as follows: βθ(v) = v/(1+µ∗) for all v ∈ [V , V̄ ], where

µ∗ = 0 if αηsG0(r) < b, and µ∗ is the unique solution to αηsG0(r(1 + µ)) = b(1 + µ) if αηsG0(r) ≥ b.

The result provides a complete characterization of the unique FMFE. In particular, it states that

if budgets are large (i.e., αηsG0(r) < b), then in equilibrium advertisers will bid truthfully. If however,

budgets are tight (i.e., αηsG0(r) ≥ b), then advertisers will be shading their bids in equilibrium,

considering the option value of future opportunities. We also further note here that in the case in

which the reserve price is equal to zero (r = 0), the equilibrium multiplier may be characterized in

closed form by µ∗ = (αηsG0(0)/b− 1)+.

4.3 Reformulation of the Publisher’s Problem

When Assumption 1 holds, given the existence and uniqueness of a FMFE, one may now properly and

explicitly formulate the publisher’s problem. Let I(µ, r) = 1−Fd(r;µ) denote the probability that the

impression is won by some advertiser in the exchange when advertisers shade according to the profile

µ and the publisher sets a reserve price r. Using the characterization of an FMFE in Corollary 1, one

may alternatively write the publisher’s problem in terms of multipliers rather than bidding functions,

and obtain the following Mathematical Program with Equilibrium Constraints (MPEC)

max
r,η,ι

λ
∑
θ∈Θ

pθαθηsθGθ(µ, r)− ηcI(µ, r) (6)

s.t. µθ ≥ 0 ⊥ αθηsθGθ(µ, r) ≤ bθ, ∀θ ∈ Θ,

where pθ , PΘ{θ} is the probability that an arriving advertiser is of type θ. We denote by Π(µ, r, η, ι)

the objective function of the MPEC. The first term in the objective is the publisher’s revenue rate

obtained from all bidders’ types, which is equal to the average expenditure of the advertisers. Note

that the revenue rate obtained from a given type is equal to the bidders’ average expenditure over their

campaign times the arrival rate of bidders. The second term is the opportunity cost by unit of time,

which is incurred whenever an impression is won by some advertiser in the exchange and, therefore,

cannot be sold in the alternative channel.

When studying the publisher’s maximization problem, it will be useful to separate the impact

of changing each of the design decisions on the objective. First, there is a direct effect: assuming
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advertiser’s strategies remain unchanged, modifying a decision directly impacts the objective. Second,

there is an indirect effect; modifying a decision may change the induced FMFE strategy and this, in

turn, impacts the objective.

5 Auction Design and Allocation Decisions

In this section we focus on the publisher’s profit maximization problem. The framework developed

in the previous sections can be applied to general inputs with regard to advertiser heterogeneity and

market parameters as one could solve the resulting MPEC profit maximization problem. However, to

gain further insights on the publisher’s problem, and the trade-offs at hand, we first focus on the case

of homogeneous bidders. In this case, quasi-closed form solutions may be obtained for the publisher’s

optimal decisions. In §5.2, we illustrate numerically how some of these insights may generalize to the

case of heterogeneous bidders, and help better understand the latter.

5.1 The Case of Homogeneous Advertisers

We first consider the case in which all advertisers have a fixed budget b, stay in the market for a

deterministic time s and share the same matching probability α and valuation parameter γ. That is,

bidders are homogeneous and the space of types Θ is a singleton. By Proposition (2) we know that

in this case a unique FMFE exists and we can characterize it in quasi-closed form. We leverage this

result to study the publisher’s decisions. Throughout this section, we drop the dependence on θ. In

the following we denote by hv(x) = fv(x)/F̄v(x) the failure rate of the advertisers values (who have

a common distribution), and by ξv(x) = xhv(x) the generalized failure rate of the values. We assume

that values possess strictly increasing generalized failure rates (IGFR). This assumption is common

in the pricing and auction theory literature, and many distributions satisfy this condition (see, e.g.,

Myerson (1981) and Lariviere (2006)).8

5.1.1 Optimal Reserve Price

In the absence of budget constraints, the auctions are not coupled and each auction is equivalent to a

one-shot second-price auction with opportunity cost c > 0 and symmetric bidders with private values.

In such a setting, it is well-known that the optimal reserve price, which we denote by r∗c , is independent

of the number of bidders and given by the unique solution of 1/hv(x) = x − c (see, e.g., Laffont and

Maskin (1980)). The next result establishes a counterpart for the present case with budget constraints.

8For instance the uniform, exponential, triangular, truncated normal, gamma, Weibull, and log-normal distribution
have IGFR.
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Theorem 3. (Optimal reserve price). Suppose that η and ι are fixed. If αηsG0(r∗c ) < b, then r∗c is the

unique optimal reserve price. If αηsG0(r∗c ) ≥ b, then the unique optimal reserve price is r̄ = supR∗,
where R∗ = {r : αηsG0(r) ≥ b}. Furthermore, in the FMFE induced by the optimal reserve price,

advertisers bid truthfully.

The optimal reserve price admits a closed-form expression that highlights how it balances various

effects. The expected expenditure for a bidder over its campaign when all bidders are truthful evaluated

at r∗c , αηsG0(r∗c ), plays a key role in the result. In fact, when the budget is large in the sense that

advertisers do not deplete their budget in expectation when the reserve price is r∗c (αηsG0(r∗c ) ≤ b),

then it is expected that r∗c should still be optimal in our setting. Intuitively, if the budget does not

bind, the auctions decouple into independent second price auctions. When, however, αηsG0(r∗c ) > b,

advertisers shade their values when the reserve price is r∗c . In the proof, we show that in this case

the optimal reserve price must be in R∗, that is, it must induce bidders to deplete their budgets in

expectations. For all such reserve prices, the revenue rate for the publisher is given by λb and this is

the maximum revenue rate she can extract from advertisers. Hence, recalling the objective value (6)

of the publisher, the optimal reserve price must be the value r ∈ R∗ that minimizes the probability of

selling an impression in the exchange, and therefore the opportunity cost. Increasing the reserve price

has two effects on this probability: (1) the direct effect: assuming advertiser’s strategies do not change,

an increase of the reserve price decreases the probability of selling an impression in the exchange; and

(2) the indirect effect: a change in the reserve price also alters the strategies of the advertisers through

the induced FMFE. In the proof we show that the direct effect is dominant, implying that r̄ = supR∗,
that minimizes the opportunity cost in R∗, is optimal.

It is worthwhile to compare the result above with the work in one-shot auctions with budget

constraints. In the case of a common budget for all bidders, authors have typically found that budget

constraints decrease the optimal reserve price relative to the setting without budget constraints (see

Laffont and Robert (1996) and Maskin (2000)). The reason is that with budget constraints the reserve

price is less effective in extracting rents of higher valuation types; hence, when trading-off higher

revenues conditional on a sale taking place with an increase in the probability of a sale, the latter

has more weight than in the absence of budgets. In our case, instead, the optimal reserve price with

budget constraints is larger or equal than r∗c . In fact, the optimal reserve price is max{r̄, r∗c}, because

one can show that r̄ ≥ r∗c if and only if αηsG0(r∗c ) ≥ b. The difference with the one-shot auction is

that the budget constraint is imposed over a large set of auctions as opposed to having a constraint per

auction, leading to a different trade-off for the publisher. Indeed, when the budget constraint binds,

the reserve price does not affect expected revenues, the publisher is already extracting all budgets from

the bidders. Therefore, the only role of the reserve price becomes one of reducing the opportunity cost

by decreasing the probability of a sale. As we saw, this is achieved by increasing the reserve price while
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still extracting the maximum amount of revenues.

5.1.2 Optimal Allocation of Impressions

Up to this point we assumed that all users visiting the web-site were shared with the exchange. However,

the publisher may have an incentive to allocate only a fraction of the web-site’s traffic and sell the rest

through an alternative channel. In the following we study, for a fixed reserve price r and information

disclosure ι, the publisher’s selection of an optimal allocation of impressions to the exchange η ∈ [0, η̄],

where η̄ > 0 denotes the total number of users per unit of time visiting the website. Here, I0(r) denotes

the probability that the impression is won by some advertiser in the exchange when advertisers bid

truthfully and the publisher sets a reserve price r. The following result characterizes the optimal rate

of the impressions in the presence of an opportunity cost c.

Theorem 4. (Optimal allocation of impressions). Suppose that r and ι are fixed. If cI0(r) ≥ αλsG0(r),

then the publisher is better off not participating in the exchange, and the optimal rate of impressions

is η∗ = 0. If cI0(r) < αλsG0(r), then the publisher stands to gain from participating in the exchange,

and the optimal allocation of impressions to the exchange is η∗(r) = min{η0(r), η̄} where η0(r) =

b/(αsG0(r)).

The first condition corresponds to the expected opportunity cost being greater or equal than the

average revenue per impression when bidders are truthful and in such a case, it is natural to expect that

the publisher should not allocate any impressions to the exchange. Interestingly, when the publisher

benefits from participating in the exchange, he need not always allocate all the impressions to the

exchange. While it may seem at first sight that the exchange is a “free option” to test, it is not so due

to the presence of budget constraints as we now explain.

Initially, when the supply is sufficiently small, bidders do not deplete their budget and hence are

truthful (cf. Proposition 2). In such a region, increasing the allocation of impressions yields larger

revenues for the publisher, which is in line with intuition. However, when the rate of impressions is high

enough, all advertisers deplete their budgets by the end of their campaign and no further revenue may

be extracted by allocating more impressions to the exchange, which corresponds to the market being

“saturated”. The smallest rate at which saturation takes place is exactly given by η0(r) = b/(αsG0(r)).

At that rate, advertisers are truthful; beyond that rate, bidders start shading their bids. Allocating

further impressions to the exchange does not yield additional revenues since advertisers are already

spending all their budget and hence the key resides in understanding the impact of an increase in supply

on the opportunity cost. When the publisher increases the impression rate above market saturation,

there are again two effects to consider; (1) the direct effect: sending more impressions to the exchange

directly increases the publisher’s opportunity cost if these impressions are won; and (2) the indirect
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effect: as more impressions are available, advertisers shade their bids more and in the presence of a

reserve price, the probability of a sell and the opportunity cost decrease. In the proof we show that

the direct effect dominates and increasing the rate above market saturation is suboptimal. Thus, the

optimal rate of impression is the minimum of η0(r) and η̄.

Next we characterize the optimal decision of the publisher when she optimizes over both the allo-

cation of impressions and the reserve price. In contrast to Theorem 4, when jointly optimizing over

the reserve price and the rate of impressions, the publisher is always better off allocating η̄ impressions

to the exchange. In this case, because the reserve price optimization considers the alternative channel,

the exchange becomes a “free option” that is always worth testing.

Corollary 2. (Joint allocation and reserve price optimization). Suppose that ι is fixed. The optimal

decision for the publisher is to send all impressions to the exchange, and set the reserve price according

to Theorem 3. That is, the unique optimal rate of impressions is η∗ = η̄, and the optimal reserve price

is equal to max{r∗c , r̄(η̄)}, where r̄(η) = supR∗(η) and R∗(η) = {r : αηsG0(r) ≥ b}.

We study the joint optimization problem by partitioning it in two stages. In the first stage the

publisher looks for the allocation of impressions that maximizes the optimal value of the second-

stage problem, obtained from optimizing over reserve prices. Exploiting Theorem 3 to characterize

the maximum profit over reserve prices, we show that the second-stage objective value is increasing

with the rate of impressions. Therefore, when jointly optimizing over reserve prices and the rate of

impressions, the publisher is better off allocating η̄ impressions to the exchange.

Indeed, when η < η0(r∗c ), advertisers bid truthfully and the auctions decouple. Since the optimal

reserve price r∗c is larger than the opportunity cost, any given impression will potentially raise more

revenues in the exchange than in the alternative channel, and the publisher is better off increasing

the supply to the exchange. When η ≥ η0(r∗c ), the publisher sets the reserve price in a way that the

advertisers deplete their budgets in expectation while bidding truthfully. In this case the publisher’s

revenue is constant and does not increase as she increases the supply to the exchange, so we focus

on the probability of selling an impression in the exchange. Note that for η ≥ η0(r∗c ), there is no

indirect effect as in the previous cases; for all such values of η, when the reserve price is optimally set,

advertisers bid truthfully in equilibrium. In the proof we show, however, that the direct effect decreases

the opportunity cost as the allocation of impressions increase. As more impressions are allocated, the

reserve price is increased in a way that the advertisers spend the same amount on average, but pay

a higher price per impression and receive fewer impressions. As a result, the publisher is better off

increasing the allocation to the exchange.

20



5.1.3 Optimal Disclosure of Information

When the publisher posts an impression in the exchange she can decide which user information (if any)

to disclose to the advertisers. The publisher may decide to disclose, e.g., the content of the web-page,

user geographical location, user demographics, or cookie-based behavioral information (which allows

bidders to track the user’s past activity in the web). On the one hand, each additional level of targeting

may reduce the probability that an advertiser matches with a given user, because more criteria need

to be satisfied to do so. This may lead to thinner markets and could decrease the publisher’s revenue.

On the other hand, more information provides better targeting that results in higher valuations and

higher bids, conditional on a match. Our FMFE framework can be used to analyze (numerically or

analytically) different settings regarding the impact of information disclosure on the publisher’s profit.

Below, we illustrate this through a particular stylized model for information disclosure.9

We assume that information disclosure ι is continuous, and that there is a one-to-one decreasing

mapping between information and the matching probability; which, allows one to parameterize infor-

mation disclosure by α. As a consequence, the publisher can indirectly choose an α ∈ [0, 1]. Fix a

distribution of values Fv(·). We assume that, conditional on the choice of α, for some σ(α) > 0, the

distribution of values of the advertisers is such that

Fv(α)(x) = Fv(x/σ(α)), (7)

ασ(α) = 1, for all α ∈ (0, 1].

The first condition corresponds to the values being scaled by a deterministic factor σ(α) (i.e., under

this scaling the new values V (α) , σ(α)V ). In other words, the model is one in which information

impacts the scale but not the shape of distribution of valuations. The second assumption governs the

relationship between the matching probability and the scaling factor. Ensuring that ασ(α) is constant

guarantees that the ex-ante mean valuation is independent of the level of information disclosure (the

ex-ante mean value is given by αE[V (α)] = ασ(α)EV ). That is, under such a model, when the matching

probability is halved, advertisers participate in half the number of auctions on average, but in each

auction their values are doubled.

With some abuse of notation, let Π(µ, r, α) be the publisher’s long-run average profit as a function of

the reserve price r and the matching probability α, when advertisers employ a multiplier µ, with values

scaled as above. For a fixed matching probability α, the publisher’s objective is to maximize profit by

choosing a reserve price. The publisher’s maximum profit is given by Π(α) = maxr≥0 Π(µ(r, α), r, α),

9Previous papers have analyzed the trade-off introduced by targeting between increasing valuations by improving the
match and reducing revenues by creating thinner markets. Bergemann and Bonatti (2011) does so in a market with a
continuum of advertisers and a continuum of consumers and Board (2009) in a static auction setting with a fixed reserve
price.
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where µ(r, α) denotes the equilibrium multiplier for the given auction parameters.

Theorem 5. (Joint information disclosure and reserve price optimization). Suppose that η is fixed

and that advertisers’ valuations follow (7). When the publisher reacts to thinner markets by setting an

appropriate reserve price, then disclosing more information improves the profit, that is, the publisher’s

profit Π(α) = maxr≥0 Π(µ(r, α), r, α) is non-increasing in α.

We provide the main ideas behind the argument. First, in view of Theorem 3, advertisers bid

truthfully at the optimal reserve price, and there is no need to take into account the shading of bids.

Hence, when changing α, there is no indirect effect, and it is enough to show that the direct effect of

decreasing α (corresponding to the impact of having thinner markets but larger valuations) increases

the publisher’s profits. Now, there are two cases to consider. When the expenditure at r∗c (α) does

not exceed the budget, we have that r∗c (α) is the optimal reserve price. In the proof, we show that

in this case profits increase as α decreases. When the expenditure at r∗c (α) exceeds the budget, then

the publisher prices at r̄(α) = sup{r ≥ 0 : αηsG0(r, α) ≥ b}, and advertisers deplete their budgets

in expectation. Here, we show that as the matching probability decreases, the optimal reserve price

r̄(α) changes, resulting in more impressions returned to the publisher, and a lower opportunity cost,

increasing publishers’ profits.

A key piece in the previous result is that the publisher reacts to changes in the distribution of

values by adjusting the reserve price. In this case, the publisher can extract advertisers’ surplus even

if markets are thin. However, failing to properly adjust the reserve price may prevent the publisher

from extracting the surplus generated by targeting. In fact, the publisher’s revenue may deteriorate

when disclosing more information if the reserve price is not properly adjusted as we now explain.

Suppose that the publisher is disclosing an initial level of information that attains a matching

probability α0, she is pricing at the optimal reserve price r∗c (α0), and the advertiser’s expenditure does

not exceed the budget. Consider the publisher’s profit as a function of the matching probability when

the reserve price is not adjusted, which is given by Π(r∗c (α0), α) (we dropped the dependence on µ(r, α)

to simplify the notation). One can show that Π(r∗c (α0), α) is locally non-increasing near α0, that is, a

small increment in the disclosure of information actually increases profits.10 Nonetheless, it is possible

to show that disclosing more information and further decreasing α may cause profits to decrease.

5.2 Numerical Results for the Case of Heterogeneous Advertisers

While it was possible to obtain essentially closed-form solutions for the publisher’s decisions in the

case of homogeneous advertisers, it is not, in general, possible to derive such results for the case of

10This follows from the fact that Π(α) is the envelope of Π(r, α) over reserve prices, r∗(α0) is optimal at α0, and that
Π(α) is non-increasing.
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heterogeneous advertisers. However, one may always numerically analyze the impact of the publisher’s

decisions on the advertisers’ equilibrium outcome under different scenarios by solving for the FMFE

using the characterization in Corollary 1 for different auction parameters. In this section, we conduct

a series of numerical experiments to explore the impact of the allocation of impressions and the reserve

price on the publisher’s profit to conduct some robustness check on some of the conclusions of §5.1.

The setup is as follows. We consider randomly generated instances with a heterogeneous population

of advertisers with five types. Budgets for each type are sampled from a discrete uniform distribution

with support {1, 2, ..., 10}. Additionally, we experiment with the proportion of these types by choosing

the probabilities pθ of an arriving advertiser being of type θ uniformly from the probability simplex.

Throughout the experiments we fix the matching probability α = 0.1 and the campaign length to

s = 10, but select the arrival rate λ uniformly in [1, 5] so that the average number of matching bidders

in an auction αλs varies from 1 to 5. Finally, we assume that values are exponentially distributed

with each type’s mean independently and uniformly sampled from [1, 5] (the supports of valuations

are truncated to [0, 10]). From the perspective of the publisher, we study scenarios with different

opportunity costs c for the alternative channel, by choosing the cost uniformly from [1, 5]. In total, we

consider 150 different scenarios. Additionally, for each scenario, we experiment with increasing levels

of impressions allocated to the exchange, as given by η.11

For each combination of parameters and value of η, we optimize problem (6) over the reserve price;

and compute the optimal reserve price r∗ and the optimal profit for the publisher Π∗. Then, we

compute the latter quantities for a grid of values of the rate of impressions η. An important conclusion

in §5.1 was that it is optimal for the publisher to send all the impressions to the exchange as long

as the reserve price was properly adjusted. For all sampled parameters, we indeed find that, when

the publisher accounts for the optimal reserve price, her profit is increasing with the allocation of

impressions. As before, the publisher is better off sending all impressions to the exchange, even in the

presence of an alternative channel.

To explore an illustrative example in further detail, Figure 1 depicts, for a given set of parameters

with two types, the optimal publisher’s profit (a), the equilibrium advertisers’ expenditures (b) and

multipliers (c) at the optimal solution, as well as the optimal reserve price (d) (all as a function of

the allocation of impressions to the exchange η). Notice that when the publisher prices optimally, the

high-budget type always bids truthfully. However, this is not necessarily true for the low-budget type.

As opposed to the homogeneous case, now the publisher cannot perfectly discriminate between types

and for some levels of supply, low-type advertisers will shade their bids under the optimal reserve price.

Focusing on the optimal reserve price, as expected, we observe that advertisers do not have a chance

to deplete their budgets for low levels of supply. In this case, advertisers bid truthfully and r∗c is the

11For fixed auction parameters, solving for the FMFE takes a few seconds on a laptop computer.
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Figure 1: Optimal profit, expenditures, multipliers and reserve price as a function of the rate of
impressions for an instance with α = 0.1, λ = 1, s = 40, Unif[0, 2] distribution, c = 2

3 , b = (1, 8),
and p = (1

5 ,
4
5). For illustration purposes we only consider two types and different parameters than

above. (a) the solid line denotes the optimal profit. (b) the solid lines correspond to the campaign
expenditures for each type, while the dashed lines denote the budgets. (c) equilibrium multipliers as a
function of the allocation of impressions. (d) the solid line corresponds to optimal reserve price, while
the dashed lines denote the optimal prices when all advertisers share the same budget (either b1 or b2).

optimal reserve price. As the publisher shares more impressions with the exchange, the expenditures

increase up to the point at which the low-type becomes budget constrained. From then on the publisher

needs to balance two effects. On the one hand, since the low-type is now shading her bids, the publisher

has an incentive to increase the reserve price so as to minimize the number of impressions won and the

opportunity cost. The latter is achieved by r̄1(η), the optimal reserve price if all advertisers shared the

same budget b1 (the top dashed line). On the other hand, the publisher has an incentive to price close

to r∗c to extract the surplus from the high-type advertisers, who are not depleting their budgets. The

24



tradeoff is such that, initially, the weight of the low-budget type bidders is higher and it is optimal

for the publisher to price close to r̄1(η), and thus increasing the reserve price with the allocation of

impressions. At this price, however, the expenditure of the high-budget type is well below its budget,

and the publisher may be leaving money on the table. When enough impressions are allocated to

the exchange this effect becomes dominant and the publisher tries to extract this surplus by pricing

closer to r∗c ; thus the sudden kink and decrease in the optimal reserve price. If the publisher keeps

increasing the allocation of impressions, eventually both types become budget constrained. Similarly

to the homogeneous case, the publisher is now better off pricing in a way that both types deplete

their budgets, but with the high-type bidding truthfully, so that the number of impressions won by

the advertisers is minimized. For this reason, at this point the optimal reserve price starts increasing.

In our numerical experiments, a similar structure and tradeoff appears when there are more than

two types of advertisers with different budgets in the population, with one new kink in the optimal

reserve price for each additional type. As previously mentioned, in these experiments, we also observed

that the publisher’s profit rate is increasing in the rate of impressions. As an illustration, in Figure 2

we provide similar plots than the ones above for a market with five advertiser types.

The numerical experiments above illustrate the behavior and tradeoff one observes with heteroge-

neous advertisers, focusing on the allocation of impressions. In the same manner, given an arbitrary

mapping from information to distribution of values, it would be possible to explore the optimal amount

of information disclosure. The latter is an important question in these markets and our framework

could allow to study the impact of different information disclosure policies on publisher’s profits when

advertisers are heterogeneous.

6 Conclusions

Overall, our results provide a new approach to study Ad Exchange markets and the publishers’ deci-

sions. The techniques developed build on two fairly distinct streams of literature, revenue management

and mean field models and are likely to have additional applications. The sharp results regarding the

publisher’s decisions could inform how these markets are designed in practice.

At the same time, our framework opens up the door to study a range of other relevant issues

in this space. For example, one interesting avenue for future work may be to study the impact of

Ad networks, that aggregate bids from different advertisers and bid on their behalf, on the resulting

competitive landscape and auction design decisions. Similarly, another interesting direction to pursue

is to incorporate common advertisers’ values and analyze the impact of cherry-picking and adverse

selection. Finally, our framework and its potential extensions can provide a possible structural model for

bidding behavior in exchanges, and open the door to pursue an econometric study using transactional
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Figure 2: Optimal profit, expenditures, multipliers and reserve price as a function of the rate of
impressions for an instance with α = 0.1, λ = 4, s = 10, Exponential(1) distribution of values, c = 1,
bθ = 1, 2, 3, 4, 5, and types probabilities are equal to 1/5 each.

data in exchanges, a direction we are currently exploring.
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A Selected Proofs

We start by providing characterizations of the distribution of the maximum bid and the expenditure

function that are used throughout the results.

Lemma 1. i.) The distribution of the maximum competing bid when x ≥ r can be characterized by

Fd(x;µ) = exp

{
−E[αΘλsΘ]

∑
θ

PΘ̂{θ}F̄vθ((1 + µθ)x)

}
,

where Fvθ(·) , Fv(·; γθ) is the distribution of values for type θ.

ii.) The expenditure function for type θ can be characterized by

Gθ(µ, r) = rF̄vθ((1 + µθ)r)Fd(r;µ) +

∫ V̄

r
xF̄vθ((1 + µθ)x) dFd(x;µ).

Proof of (i). Let Fw(·;µ) be the cumulative distribution function of the bid from a single matching

advertiser when bidders implement the fluid-based strategy with a profile of multipliers µ, which is given

by the random variable Ŵ = VΘ̂/(1 + µΘ̂). Since valuations are i.i.d., one can write the c.d.f. of bids

as Fw(x;µ) = E
[
FvΘ̂

(
x(1 + µΘ̂)

)]
, where the expectation is taken over the steady-state distribution

of types Θ̂. As a consequence, the maximum competing bid is given by D = max
(
Ŵ1:M̂ , r

)
, where

Ŵ1:M̂ is the first order statistic of M̂ i.i.d. samples of Ŵ . Its distribution when x ≥ r is

Fd(x;µ) = E
[
Fw(x;µ)M̂

]
= exp

{
−E[αΘλsΘ]F̄w(x;µ)

}
,

where we used the fact that bids are independent, that M̂ is Poisson with mean E[αΘλsΘ], and the

Poisson probability generating function. The result follows by replacing the expression for Fw in the

equation above.

Proof of (ii). The expenditure function can be written as

Gθ(µ, r) = E [1{(1 + µθ)D ≤ Vθ}D] = E
[
DF̄vθ((1 + µθ)D)

]
= rF̄vθ((1 + µθ)r)Fd(r;µ) +

∫ V̄

r
xF̄vθ((1 + µθ)x) dFd(x;µ),
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where the second equation follows by the independence of Vθ and D, and the third by recognizing that

D is the maximum between the largest bid from advertisers and the reserve price r.

Using the previous characterizations we state a set of useful properties of the expenditure function.

Lemma 2. i.) For any µ, the maximum bid D ∼ Fd(µ) is integrable, that is, E[D] <∞.

ii.) For any θ ∈ Θ, the expenditure function Gθ(µ, r) is differentiable with respect to µ and r.

iii.) For any θ ∈ Θ and r ∈ [V , V̄ ], ∂Gθ(µ, r)/∂µθ < 0.

iv.) For any vector of multipliers µ ∈ R|Θ|+ , limr→∞Gθ(µ, r) = 0.

v.) For any r ≥ 0 and vector of multipliers µ−θ ∈ R|Θ|−1
+ , limµθ→∞Gθ(µ, r) = 0.

A.1 Proof of Proposition 1

We prove the result in three steps. First, we derive the dual of the primal problem by introducing a

lagrange multiplier for the budget constraint. Second, we determine the optimal dual solution through

first-order conditions. Third, we show that complementary slackness holds and that there is no duality

gap. To simplify notation we drop the dependence on Fd when clear from the context.

Step 1. We introduce a lagrange multiplier µ ≥ 0 for the budget constraint and let

Lθ(w, µ) = αηsE
[
1{D ≤ w(V )}

(
V − (1 + µ)D

)]
+ µb

denote the Lagrangian for type θ (for simplicity we omit the subindex θ for other quantities). The

dual problem is given by

inf
µ≥0

sup
w(·)
Lθ(w, µ) = inf

µ≥0

{
αηs sup

w(·)

{
E
[
1{D ≤ w(V )}

(
V − (1 + µ)D

)]}
+ µb

}
= inf

µ≥0

{
αηsE

[
1{(1 + µ)D ≤ V }

(
V − (1 + µ)D

)]
+ µb

}
= inf

µ≥0

{
αηsE

[
V − (1 + µ)D

]+
+ µb

}
,

where the second equality follows from observing that the inner optimization problem is similar to the

problem faced by a bidder with value v
1+µ seeking to maximize its expected utility in a second-price

auction, in which case it is optimal to bid truthfully. Let Ψθ(µ) = αηsE
[
V − (1 + µ)D

]+
+ µb. Notice

that the term within the expectation is convex in µ; given that expectation preserves convexity, the

dual problem is convex. As a consequence of the previous analysis one obtains for any given multiplier

µ ≥ 0, the policy w(v) = v
1+µ maximizes the Lagrangian.

Step 2. In order to characterize the optimal multiplier we shall analyze the first-order conditions

of the dual problem. The integrability of D, in conjunction with the dominated convergence theorem,

yield that Ψθ is differentiable w.r.t. µ. The derivative is given by d
dµΨθ = b−αηsE

[
1
{
D ≤ V

1+µ

}
D
]
,
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which is equal to the expected remaining budget by the end of the campaign when the optimal bid

function is employed.

Suppose αηsE [1 {D ≤ V }D] ≤ b, i.e., Ψθ admits a non-negative derivative at µ = 0. Since Ψθ is

convex, the optimal multiplier is µ∗ = 0. Suppose now αηsE [1 {D ≤ V }D] > b. The derivative of Ψθ

is continuous (by another application of the dominated convergence theorem) and converges to b as

µ→∞. We deduce that the equation αηsE
[
1
{
D ≤ V

1+µ

}
D
]

= b, admits a solution and the optimal

multiplier µ∗ solves the latter.

Step 3. Combining both cases, one obtains that the optimal multiplier µ∗ and the corresponding

bid function βF
θ (v) = v/(1 + µ∗) satisfy µ∗

(
b − αηsE [1 {D ≤ βF

θ (V )}D]
)

= 0, and thus the comple-

mentary slackness conditions hold. Additionally from the first-order conditions of the dual, we get

that the bid function βF
θ (·) is primal feasible. We conclude by showing that the primal objective of the

proposed bid function attains the dual objective. That is,

αηsE
[
1{D ≤ βF

θ (V )}
(
V −D

)]
= Lθ(βF

θ , µ
∗) + µ∗

(
b− αηsE [1 {D ≤ βF

θ (V )}D]
)

= Lθ(βF
θ , µ

∗) = Ψθ(µ
∗),

where the second equality follows from the complementary slackness conditions and the last from the

fact that Ψθ(µ
∗) = supw(·) Lθ(w, µ∗), and the fact βF

θ is the optimal bid function.

A.2 Proof of Theorem 3

The proof proceeds as follows. We first state and prove some basic properties of the publisher’s profit

function. Second, we characterize the optimal reserve price in the two cases described in the statement

of the theorem.

Using (6), the publisher’s profit as a function of the reserve price and the multiplier can be written

as Π(µ, r) = αληsG(µ, r)− ηcI(µ, r), with I(µ, r) the probability that the impression is won by some

advertiser in the exchange when advertisers employ a multiplier µ and the publisher sets a reserve price

r. Note that I(µ, r) = I0((1 + µ)r), where by Lemma 1(i), I0(r) = 1 − e−αλsF̄v(r) is the probability

that the impression is won in the exchange by truthful advertisers . The publisher’s problem amounts

to solving maxr≥0 Π(µ(r), r), where µ(r) is the unique equilibrium multiplier for price r.

It is simple to show that r∗c ≥ c, and that r∗c (the optimal reserve price of the one-shot auction)

is increasing in c; that is, when the opportunity cost increases, the publisher is more inclined to keep

the impression, and thus she increases the reserve price. Let g = b/(αηs) be the maximum target

expenditure per auction of a bidder. We show the following preliminary results:

(i) The function Π(0, r) is quasi-concave in r on [V , V̄ ], and the maximum is obtained at r = r∗c .

When µ = 0, all advertisers bid truthfully and the auctions decouple; the result then essentially

follows by the optimality of r∗c in a second-price auction with the only caveat that in our setting

the number of bidders is random. Formally, one may write the derivative of the profit w.r.t. the
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reserve price as

∂Π

∂r
(0, r) = αληs

(
G′0(r) + ce−αλsF̄v(r)fv(r)

)
= αληsF̄v(r)e

−αλsF̄v(r)

(
1− r − c

r
ξ(r)

)
, (8)

where the second equation follows by Lemma 1(ii). The previous expression vanishes at r∗c .

Notice that the leading terms in the derivative are non-negative, and by the IGFR assumption,

it follows that the derivative is non-negative for r < r∗c and non-positive for r > r∗c . Thus, Π(0, r)

is strictly quasi-concave on [V , V̄ ].

(ii) Then the set R∗ is a closed bounded interval. The proof follows by noticing that setting c = 0

in (8) implies that G0(r) is strictly quasi-concave in r (in the interval [V , V̄ ]). Since R∗ is an

upper-level set of G0, and G0 is continuous we get that R∗ is a closed interval. The boundedness

of R∗ follows from Lemma 2 iv.).

(iii) The equilibrium multiplier verifies µ > 0 for r in the interior of R∗, and zero otherwise. That

µ = 0 outside the interior of R∗ follows directly from the statement of Proposition 2. By the

strict quasi-concavity of G0(r) in r, αηsG0(r) > b for r in the interior of R∗, so by Proposition 2,

µ > 0 for r in this set.

(iv) When r ∈ R∗ the probability that the impression is won I(µ(r), r) is decreasing in r. Write the

total derivative of the probability that the impression is won as

I ′(µ(r), r) = I ′µ(µ(r), r)µ′(r) + I ′r(µ(r), r) = −αλse−αλsF̄v((1+µ)r)fv((1 + µ)r)
(
µ′r + 1 + µ

)
,

where to simplify the notation we dropped the dependence of r in µ in the second equation.

Hence, it suffices to show that µ′r + 1 + µ ≥ 0 to conclude that I(µ(r), r) is decreasing in r.

Since r ∈ R∗ we have that G(µ, r) = g, and by the implicit function theorem the derivative of

the multiplier w.r.t. r is given by µ′ = −G′r(µ, r)/G′µ(µ, r). Thus,

µ′r + 1 + µ = −
G′r(µ, r)r − (1 + µ)G′µ(µ, r)

G′µ(µ, r)
= − G(µ, r)

G′µ(µ, r)
≥ 0,

where the second equation follows from the fact that G′r(µ, r) = G′0((1 + µ)r) and G′µ(µ, r) =

G′0((1 + µ)r)r/(1 + µ)−G(µ, r)/(1 + µ), and the inequality from the fact that G(µ, r) = g ≥ 0,

and that G(µ, r) is decreasing in µ for fixed r by Lemma 2 iii.).

Now, we study the two cases.

Case 1. Suppose that the expenditure at r∗c does not exceed the budget-per-auction g (i.e.,

G0(r∗c ) < g), we should show that r∗c is optimal. If the set R∗ is empty (which occurs when G0(r∗0) < g,

because r∗0 maximizes G0), then by property (iii) the equilibrium multiplier is µ(r) = 0 for all r, so

bidders are truthful for all r. Hence, r∗c is the optimal reserve price by (i).
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Next, assume that the set R∗ is non-empty. By property (ii), the set is compact and thus r̄ =

supR∗ <∞. Moreover, G0(r̄) = g, because R∗ is closed. For prices r ∈ R∗ we have that Π(µ(r), r) ≤
Π(0, r̄) ≤ Π(0, r∗c ). The first inequality follows by the following observation: bidders exhaust their

budgets for r ∈ R∗ (and spend g per auction). Therefore, the reserve price in R∗ that maximizes

profits is the one that minimizes the probability of selling an impression. Note that decreasing the

reserve price from r has two effects: (1) the probability of a sell increases because of the direct effect;

and (2) the probability of a sell decreases because of the indirect effect that bidders start shading their

equilibrium bids. Property (iv) shows that the direct effect is dominant, and therefore, r̄ minimizes

the probability of selling an impression within R∗. The second inequality follows from the fact that

µ(r̄) = 0 by (iii). Every reserve price r 6∈ R∗ is dominated by r∗c . Since in both cases the multipliers

are zero and advertisers are truthful, r∗c is optimal by property (i).

Case 2. Suppose that the expenditure at r∗c exceeds the maximum expenditure g (i.e., G0(r∗c ) ≥ g).

Bidders are budget constrained at r∗c and r∗c ∈ R∗. Take any price r ∈ R∗. As in case 1, property

(iv) implies that the profit for any price in that set is dominated by that of r̄. Now consider prices

strictly greater than those in R∗, that is, those satisfying r > r̄, which have µ(r) = 0. From property

(i), we have that Π(0, r) is non-increasing to the right of r∗c . Because r∗c ≤ r̄ ≤ r, we have that

Π(0, r̄) ≥ Π(0, r). Hence, every reserve price r > r̄ is dominated by r̄. A similar argument holds for

prices strictly less than those in R∗ and the optimality of r̄ follows.

A.3 Proof of Corollary 2

Let Π(µ, r, η) be the publisher’s profit as a function of the equilibrium multiplier, the rate of impressions,

and the reserve price, respectively. The publisher’s problem amounts to solving maxr≥0,0≤η≤η̄ Π(µ(r, η), r, η),

where µ(r, η) is the equilibrium multiplier for the given auction parameters. We prove the result by

partitioning the publisher’s problem in two stages: in the inner stage, the optimization is conducted

over r, while in the outer stage over η.

Let Π(η) = maxr≥0 Π(µ(r, η), r, η) be the objective of the inner optimization. By Theorem 3 we

have that

Π(η) =

Π(0, r∗c , η), if η ≤ η0(r∗c ),

Π(0, r̄(η), η), if η > η0(r∗c ).

Notice that Π(η) is continuous in η since r̄(η0(r∗c )) = r∗c . Also note that for all values of η, once the

reserve price is set optimally, advertisers bid truthfully. In that sense, changing η does not have an

indirect effect of changing the equilibrium strategies. We next show that Π(η) in increasing in η.

For the first piece, we have that Π(0, r∗c , η) = αληsG0(r∗c )− ηcI0(r∗c ), which is linear and increasing

in η. For the second piece, the objective is Π(0, r̄(η), η) = λb − ηcI0(r̄(η)). Revenues are fixed and

equal to λb, and we focus on the opportunity cost. Taking the derivative w.r.t. η, one obtains that

dΠ

dη
= −cI0(r̄) + c

(
1− I0(r̄)

)
fv(r̄)αληs

dr̄

dη
,
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where we dropped the dependence of r̄ on η. Since αηsG0(r̄) = b, one may invoke the Implicit Function

Theorem to write dr̄/dη = −b/(αη2sG′0(r̄)). Note that G′0(r̄) < 0 because r̄ > r∗0, and thus the optimal

reserve price is non-decreasing with the rate of impressions. Combining expressions and using that

G′0(r̄) = (1− I0(r̄))(F̄v(r̄)− r̄fv(r̄)) by Lemma 1(ii), one obtains

dΠ

dη
=
c
(

1− I0(r̄)
)

−ηG′0(r̄)

(
ηI0(r̄)F̄v(r̄) +

(
λb− ηI0(r̄)r̄

)
fv(r̄)

)
.

Note that the publisher’s revenue (λb) is lower bounded by ηr̄I0(r̄) since advertisers pay at least the

reserve price of the auction. Hence the derivative above is positive and the proof is complete.

B Approximation

In this section, we present a result that establishes that the FMFE provides a good approximation to

the rational behavior of agents when the markets are large and the number of bidding opportunities

per advertiser are also large. More specifically, we show that when all advertisers implement the FMFE

strategy, the relative increase in payoff of any unilateral deviation to a strategy that keeps track of all

information available to the advertiser in the market becomes negligible as the market scale increases.

Hence, FMFE strategies become asymptotically optimal.

We consider a sequence of markets indexed by a positive parameter κ, referred to as the scaling;

such that the higher the scaling, the larger the market “size”. On the demand side, a θ-type advertiser

matching probability decreases as ακθ ∝ κ−1, while the budget increases as bκθ ∝ log κ. Additionally,

the arrival rate of advertisers increases as λκθ ∝ κ; and both the distribution of values and the length of

the campaign are invariant to the scaling. On the supply side, the arrival rate of impressions increases

as ηκ ∝ κ log κ. Hence, the mean number of auctions an advertiser participates in, ακθη
κsθ ∝ log κ,

grows at the same rate that the budget. The scaling is such that auctions occur more frequently, but

the expected number of matching bidders in each auction, ακθλ
κ
θsθ, remains constant. Additionally,

the FMFE is invariant to the scaling, because advertisers aim to satisfy the budget constraints in

expectation and strategies are state-independent (see Eq. (1) and (2)). Thus, irrespectively of the

scaling, the FMFE strategy is given by βF = {βF
θ }θ∈Θ and is described by a vector of multipliers.

We denote the kth advertiser history up to time t by hk(t). The history encapsulates all available

information up to time t including the advertiser’s arrival time to the system; her initial budget; length

of stay in the exchange; the realizations of her values up to that time; her bids; and whether she won or

not the auctions, and in the cases she did win, the payments made to the publisher. We define a pure

strategy β for advertiser k as a mapping from histories to bids. A strategy specifies, given an history

hk(t) and assuming the advertiser participates in an auction at time t, an amount to bid β(hk(t)). We

denote by B be the space of strategies that are non-anticipating and adaptive to the history.

For a fixed scaling κ, we study the expected payoff of a fixed advertiser, referred to as the zeroth

advertiser, from the moment she arrives to the exchange until her departure, when she implements

a strategy β ∈ B and all other advertisers follow the FMFE strategies βF. This expected payoff is
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denoted by Jκθ (β,βF), where the expectation is taken over the actual market process, with the initial

market state drawn at random from an appropriate distribution. In this notation, Jκθ (βF
θ ,β

F) measures

the actual expected payoff of the FMFE strategy for the advertisers in the exchange.12 We have the

following result.

Theorem 6. Suppose that r > 0 and that there are at most two bidders’ types. Consider a market

with scaling κ in which all bidders, except the zeroth bidder, follow the FMFE strategy βF. Suppose

that a θ-type advertiser (the zeroth bidder), upon arrival to the market, deviates and implements a non-

anticipating and adaptive strategy βκ ∈ B. The relative expected payoff of this deviation with respect to

the FMFE strategy βF
θ satisfies

lim sup
κ→∞

Jκθ (βκ,βF)

Jκθ (βF
θ ,β

F)
≤ 1,

when the initial states of the advertisers in the market are drawn from an appropriately pre-specified

distribution.13

The result establishes that the payoff increase of a deviation to a strategy that keeps track of all

available information, relative to the payoff of the FMFE strategy, becomes negligible as the scale of

the system increases. Therefore, FMFE approximates well the rational behavior of advertisers, in the

sense that unilateral deviations to more complex strategies do not yield significant benefits. The proof

of this result is provided in Balseiro et al. (2012) and is beyond the scope of the present paper but we

discuss its main ideas below.

The key simplifications in the FMFE were that: i.) All advertisers present in the market were

allowed to bid and the possibility of them running out of budget was only taken into account to

compute an appropriate shading parameter in the fluid optimization problem, but not when sampling

competitors’ bids; and ii.) The mean field model assumes that the actions of an advertiser do not affect

the competitors in the market, and that competitors’ states and the number of matching bidders in

successive auctions are independent.

The first step of the proof consists of addressing i.). To that end, we introduce a new mean field

model, referred to as budget-constrained mean-field model (BMFM), that is similar to the original

fluid model, but that accounts explicitly for the fact that advertisers may run out of budget, and not

participate in some auctions. We establish that in the BMFM, when the scale increases, the expected

fraction of time that any bidder has positive budget during her campaign converges to one. Using this

result and techniques borrowed from revenue management (see, e.g., Talluri and van Ryzin (1998)),

we show that the FMFE strategy is near-optimal when an advertiser faces the competition induced by

the BMFM. This result justifies our initial assumption in the FMFE that advertisers present in the

market do not run out of budgets.

12Note that this performance metric may differ from the FMFE value function, given by the objective value of the
approximation problem JF

θ (Fd) given in (1).
13We discuss the nature of this distribution in Balseiro et al. (2012) and we show that this distribution gets close to the

FMFE steady-state distribution as the market scale increases. In addition, we show that the assumption on the maximum
number of types can be relaxed under further technical conditions.
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The second step of the proof consists of addressing ii.) above. Given our scaling, we show that

with high probability an advertiser interacts throughout her campaign with distinct advertisers who

do not share any past common influence, and that the same applies recursively to those advertisers

she competes with. This implies that, in this regime, the states of the competitors faced by the

zeroth advertiser are essentially independent, and that her actions have negligible impact on future

competitors. Additionally, we show that the impact of the queueing dynamics on the number of

matching bidders may be appropriately bounded, and that the number of matching bidders in successive

auctions are asymptotically uncorrelated. These steps combine a propagation of chaos argument for

the interactions (similar to that used in Graham and Méléard (1994) and Iyer et al. (2011)) and a fluid

limit for the advertisers’ queue. Thus, as the scaling increases the real market behaves like the BMFM.

We note that Theorem 6 is proved for a given family of scalings. We conjecture, however, that the

family of scalings under which our approximation result is valid is broader. In fact, the first step above

generalizes to other scalings. On the other hand, the second step relies quite heavily on the nature of

the scaling. For this step, our scaling and techniques are similar to those present in the papers using a

propagation of chaos argument mentioned in the previous paragraph. An interesting technical avenue

for future research is the generalization of these techniques and the family of scalings under which

the second step above (and ultimately Theorem 6) holds. This generalization is likely to have other

applications in mean-field models beyond the one presented in this paper.
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Supplementary Appendix

C Sufficient Conditions for P-matrix Assumption to Hold

We establish here sufficient conditions for Assumption 1, that was required for uniqueness of a FMFE,

to hold.

Proposition 3. The P-matrix condition (Assumption 1) holds in either of the following cases.

i.) Θ is a singleton.

ii.) Θ contains two types, and these have a common value distribution with positively homogeneous

failure rate.

The positively homogeneous condition in ii.) imposes that there is some n ≥ 0 such that hv(ax) =

anhv(x) for all x ∈ dom(V ) and a > 0. This property is satisfied by distributions whose failure rates are

power functions; such as the exponential, Weibull, and Rayleigh distributions. Additionally, it is not

difficult to show from first principles that, for the case of two types with common value distribution,

Assumption 1 holds when values are uniformly distributed with support [0, V̄ ].

D Additional Proofs

D.1 Proof of Theorem 1

We prove the result in three steps. First, we show that the best-response correspondence can be

restricted to a compact set. Second, we prove that the dual objective function is jointly continuous in

its arguments. We conclude in the third step.

Step 1. Let s̄ = maxθ∈Θ sθ be the largest possible campaign length, ᾱ = maxθ∈Θ αθ be the largest

matching probability, b = minθ∈Θ bθ be the smallest possible budget, and note that s̄, ᾱ, b are positive.

We establish that selecting a multiplier outside of U , [0, µ̄] with µ̄ , ᾱηs̄V /b is a dominated strategy.

To see this notice that for every µ > µ̄ we have that

Ψθ(µ;µ) ≥ µbθ > µ̄b = ᾱηs̄V ≥ αθηsθV ≥ Ψθ(0;µ),

and thus every µ > µ̄ in the dual problem is dominated by µ = 0.

Consider the best-response correspondence restricted to U , M : U |Θ| → P(U |Θ|) defined for each

type θ ∈ Θ as Mθ(µ) = arg minµ∈U Ψθ(µ;µ). By the above, to establish the existence of a FMFE, it is

sufficient to show that M admits a fixed-point, that is, there is some profile of multipliers µ∗ ∈ U |Θ|

such that µ∗ ∈M(µ∗).

Step 2. Next, we show that for each type θ ∈ Θ the objective function Ψθ(µ;µ) is jointly continuous

in µ and µ. Consider a sequence (µn,µn) ∈ U × U |Θ| converging as n → ∞ to some (µ,µ) in the
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set. Notice that under the discreteness of the type space we can write the distribution of bids as

Fw(x;µ) =
∑

θ∈Θ P{Θ̂ = θ}Fvθ (x(1 + µθ)). Because the sum is finite and Fvθ(·) is continuous; we

have that Fw(x;µn) → Fw(x;µ) as n → ∞ for all x. Furthermore, because the distribution Fd of

the maximum bid is a continuous function of Fw (cf. Lemma 1(i)), we get that the same holds for

the maximum bid. Denoting by Dn the maximum bid random variable associated to µn, by D the

maximum bid random variable associated to µ; the previous argument implies that Dn converges in

distribution to D. Additionally, by Slutsky’s Theorem we have get that (1 + µn)Dn ⇒ (1 + µ)D.

Consider the function `(x) = E[V − x]+ =
∫∞
x F̄v(y) dy. The function ` is bounded by EV and

continuous. Using the fact that valuations are independent and conditioning on the maximum bid, we

may write the dual objective as Ψθ(µ;µ) = αηsE
[
`
(
(1 + µ)D

)]
+ µb. By portmanteau theorem we

have that E
[
`
(
(1 + µn)Dn

)]
→ E

[
`
(
(1 + µ)D

)]
, and thus Ψ is jointly continuous in (µ,µ).

Step 3. Because the domain is compact, Ψ is jointly continuous in (µ,µ), and convex in µ for fixed

µ (cf. proof of Proposition 1), an FMFE is guaranteed to exist by Proposition 8.D.3 in Mas-Colell

et al. (1995).

D.2 Proof of Theorem 2

Exploiting the fact that the dual objective is convex and differentiable, one may write the equilibrium

condition (4) as a Nonlinear Complementarity Problem (NCP). From the optimality conditions of the

dual, it should be the case that for each type θ ∈ Θ, one of the following alternatives holds

µ∗θ = 0,
∂Ψθ

∂µ
(µ∗θ,µ

∗) ≥ 0,

µ∗θ > 0,
∂Ψθ

∂µ
(µ∗θ,µ

∗) = 0.

Recall that the derivative of the dual is ∂Ψθ
∂µ = bθ − αθηsθGθ(µ, r), where G : R|Θ|+ × R+ → R|Θ|+

denotes the vector-valued function that maps a profile of multipliers and reserve price to the expected

expenditures of each bidder type. Thus, we have that a vector of multipliers µ∗ constitutes a FMFE

if it solves the NCP

µ∗θ ≥ 0 ⊥ αθηsθGθ(µ
∗, r) ≤ bθ, ∀θ ∈ Θ, (9)

where ⊥ indicates a complementarity condition between the multiplier and the expenditure, that is, at

least one condition should be met with equality. From item (ii) of Lemma 2 we have that the mapping

G is differentiable. The latter, together with the P-matrix assumption, allows one to invoke (Facchinei

and Pang, 2003a, Proposition 3.5.10) and conclude that the NCP (9) has at most one solution.
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D.3 Proof of Proposition 2

Fix r ≥ 0. The existence of the equilibrium follows from Theorem 1. The uniqueness follows from the

fact that Assumption 1 is automatically satisfied in the present case from item iii.) of Lemma 2. We

next derive the characterization of the FMFE.

Suppose first that αηsG0(r) < b. By Lemma 2 iii.), increasing the multiplier cannot increase the

expenditure, and no solution to the NCP with µ > 0 exists. Thus µ∗ = 0 is the unique equilibrium

multiplier. Suppose now that αηsG0(r) ≥ b, then advertisers need to shade their bids by picking a

non-negative equilibrium multiplier µ∗ that solves for αηsG(µ∗, r) = b (and such a solution exists by

the proof of Theorem 1). Noting that (1 + µ∗)G(µ∗, r) = G0((1 + µ∗)r) concludes the proof.

D.4 Proof of Theorem 4

We use the following lemma to prove the theorem.

Lemma 3. Let Y be a non-negative continuous random variable with increasing generalized failure

rate. Then for all y > 0

P{Y ≥ y} ≥ ξY (y)− 1

ξY (y)y
E[Y 1{Y ≥ y}],

where ξY (y) is the generalized failure rate of Y .

Proof. Notice that the bound is trivial when ξY (y) ≤ 1. We prove the equivalent bound E[Y |Y ≥ y] ≤
y ξY (y)
ξY (y)−1 when ξY (y) > 1. Let Yy , Y |Y ≥ y be the random variable Y conditional on Y being larger

that y. Clearly, the generalized failure rates ξY (x) and ξYy(x) coincide whenever x ≥ y. By the IGFR

assumption we have that the failure rate of the conditional random variable is larger than that of a

Pareto random variable with scale y and shape ξY (y), which we denote by Py. Indeed,

hYy(x) =
ξYy(x)

x
=
ξY (x)

x
≥ ξY (y)

x
= hPy(x).

Thus, we have that the random variable Py dominates Yy in the failure rate order, which in turns

implies that Py first-order stochastically dominates Yy (see, e.g., Ross (1996)). Thus,

E[Y |Y ≥ y] = E[Yy] ≤ E[Py] = y
ξY (y)

ξY (y)− 1
.

Proof of Theorem 4. Fix r ≥ 0 and let Π(µ, η) be the publisher’s profit as a function of the rate of

impressions, and the equilibrium multiplier, respectively. The publisher’s problem amounts to solving

max0≤η≤η̄ Π(µ(η), η). We use Proposition 2 to analyze the dependence of the FMFE multiplier on the

rate of impressions, µ(η). When η < η0 advertisers bid truthfully and the equilibrium multiplier is

µ(η) = 0. When η ≥ η0 advertisers shade their bids so as to deplete their budgets in expectation and
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the multiplier is the unique solution of the equation αηsG0

(
(1 + µ)r

)
= (1 + µ)b. We deduce that

Π(η) =

η
(
αλsG0(r)− cI0(r)

)
, if η < η0,

λb− ηcI0

(
(1 + µ(η))r

)
, if η ≥ η0.

Notice that Π(η) is continuous in η, and that the first piece is linear in η.

When the opportunity cost is greater or equal to the average revenue per impression (i.e., cI0(r) ≥
αλsG0(r)), the revenue function Π(η) is decreasing in its domain, and the optimal rate of impres-

sions is η∗ = 0. When the opportunity cost is less than the average revenue per impression (i.e.,

cI0(r) < αλsG0(r)), the slope of the first piece is positive and the publisher is better off allocating

more impressions.

In the remainder of the proof we prove the claim that Π(η) is decreasing for η ≥ η0, and thus the

optimal rate of impressions is min{η0, η̄}. Note that in that set, revenues are fixed equal to λb, so it

suffices to study the impact of η on the probability of selling an impression in the exchange. Taking

derivatives w.r.t. η we obtain that

dΠ

dη
= −cI0

(
(1 + µ)r

)
− ηcI ′0

(
(1 + µ)r

)
r

dµ

dη
,

where we dropped the dependence of µ on η. Once again, the impact of increasing the rate of im-

pressions can be separated in a direct and an indirect effect. The first term above corresponds to

the direct effect (the impact of increasing the supply, assuming advertisers’ strategies are fixed), and

the second to the indirect effect (the impact of the change of advertisers’ strategies). Invoking the

Implicit Function Theorem we may write the derivative of the equilibrium multiplier w.r.t. the rate of

impressions as
dµ

dη
= − G(µ, r)

ηG′µ(µ, r)
=

(1 + µ)b

η(b− αηsrG′0((1 + µ)r))
,

where the second equation follows from writing G(µ, r) = G((1 + µ)r)/(1 + µ), and using the fact that

αηsG(µ, r) = b. Note that from Lemma 2 point iii.) one gets that G′µ(µ, r) < 0, which allows one to

conclude that the multiplier is increasing with the rate of impressions. In the remainder of the proof

we show that the direct effect dominates the indirect effect.

Combining terms and using the facts that I ′0(y) = −αλsfv(y)(1 − I0(y)), and G′0(y) = (F̄v(y) −
fv(y)y)(1− I0(y)) one obtains

dΠ

dη
= −cI0 + cαλs(1 + µ)rfv(1− I0)

b

b− αηsrG′0

=
c

λb− αληsrG′0

((
λb− ηrI0︸ ︷︷ ︸

(A)

)
αλs(1 + µ)rfv(1− I0)−

(
λb− αληsrF̄v(1− I0)︸ ︷︷ ︸

(B)

)
I0

)
.

Next, we consider each term in parenthesis at a time.

4



For the first term in parenthesis, use the fact that the expenditure of the advertisers is equal to the

revenue of the publisher and that the probability that the impression is won as P{Ŵ1:M̂ ≥ r} = I0 to

write

λb− ηrI0 = ηE
[
1{Ŵ1:M̂ ≥ r}

(
max{Ŵ2:M̂ , r}

)]
− ηrP{Ŵ1:M̂ ≥ r}

= ηE
[
1{Ŵ1:M̂ ≥ r}

(
Ŵ2:M̂ − r

)+
]

= ηE
[
1{Ŵ2:M̂ ≥ r}

(
Ŵ2:M̂ − r

)]
(10)

= ηE
[
1{Ŵ2:M̂ ≥ r}Ŵ2:M̂

]
− ηrP{Ŵ2:M̂ ≥ r},

where the second equation follows from writing the maximum as max{x, y} = x + (y − x)+. Notice

that this expression is equivalent to the expected publisher’s revenue in excess of the reserve price.

We next bound the first term from above. Using an expression for the distribution of the second-

highest bid (see, e.g., David and Nagaraja (2003)) for the first equation, and the probability generating

function for the Poisson random variable M̂ with mean αλs for the second equation, we may write

Fw2:M (x) = E
[
Fw(x)M̂ + M̂Fw(x)M̂−1F̄w(x)

]
= (1 + αλsF̄w(x))e−αλsF̄w(x),

where Fw(x) = Fv((1 + µ)x) is the shaded distribution of values. Similarly, the p.d.f. is given by

fw2:M (x) = (αλs)2fw(x)F̄w(x)e−αλsF̄w(x). Note that for every multiplier µ, the resulting distribution

of the second-highest bid has IGFR whenever the distribution of valuations exhibits IGFR. Indeed,

letting ξw2:M (x) = xfw2:M (x)/F̄w2:M (x) we have that ξw2:M (x) = ξw(x)ψ
(
αλsF̄w(x)

)
, with ψ(x) =

x2/(ex − 1− x) positive and decreasing. Since, ξw(x) is increasing and F̄w(x) decreasing, we conclude

that ξw2:M (x) is increasing.

Using Lemma 3, one may bound from above term (A) above

λb− ηrI0 ≤ η
1

ξw2:M (r)
E
[
1{Ŵ2:M̂ ≥ r}Ŵ2:M̂

]
.

For the second term in parenthesis, we proceed in a similar fashion. Using the joint distribution of

the highest and second-highest bid (see, e.g., David and Nagaraja (2003)) we have that the probability

that the impression is won and the reserve price is paid is given by P{Ŵ1:M̂ ≥ r,W2:M̂ < r} =

(αλs)F̄v(1− I0). Thus, we obtain that

λb− ηr(αλs)F̄v(1− I0) = ηE
[
1{Ŵ1:M̂ ≥ r}

(
max{Ŵ2:M̂ , r}

)]
− ηrP{Ŵ1:M̂ ≥ r, Ŵ2:M̂ < r}

= ηE
[
1{Ŵ2:M̂ ≥ r}Ŵ2:M̂

]
.

Thus, the second term is equal to the expected publisher’s revenue when the second-highest bid is

above the reserve price.

5



Putting it all together, one obtains

dΠ

dη
≤
cηE

[
1{Ŵ2:M̂ ≥ r}Ŵ2:M̂

]
λb− αληsrG′0

(
1

ξw2:M (r)
αλs(1 + µ)rfv(1− I0)− I0

)

=
cηE

[
1{Ŵ2:M̂ ≥ r}Ŵ2:M̂

]
λb− αληsrG′0

(
αλsF̄v

ψ(αλsF̄v)
e−αλsF̄v − (1− e−αλsF̄v)

)

=
cηE

[
1{Ŵ2:M̂ ≥ r}Ŵ2:M̂

]
λb− αληsrG′0

(
φ
(
αλsF̄v

)
− 1
)
≤ 0

with φ(x) = (1− e−x)/x ≤ 1 for all x ≥ 0.

D.5 Proof of Theorem 5

Fix α in (0, 1]. In view of Theorem 3, advertisers bid truthfully at the optimal reserve price. Note

that the generalized failure rate of the value distribution (7) is ξv(α)(x) = ξv(x/σ(α)), and the failure

rate is hv(α)(x) = hv(x/σ(α))/σ(α). Let Π0(r, α) denote the publisher’s profit when advertisers bid

truthfully, which after integrating by parts is given by

Π0(r, α) = αληs

∫ ∞
r

F̄v(α)(x)
(
ξv(α)(x)− 1

)
e−αλsF̄v(α)(x) dx− cη

(
1− e−αλsF̄v(α)(r)

)
= ασ(α)ληs

∫ ∞
r/σ(α)

F̄v(x)
(
ξv(x)− 1

)
e−αλsF̄v(x) dx− cη

(
1− e−αλsF̄v(r/σ(α))

)
= ληs

∫ ∞
αr

F̄v(x)
(
ξv(x)− 1

)
e−αλsF̄v(x) dx− cη

(
1− e−αλsF̄v(αr)

)
,

where the second equation follows from our scaling of values and changing the integration variable,

and the last from ασ(α) = 1. Notice that the profit depends on the reserve price exclusively through

αr. Hence to simplify the analysis we perform the change of variables y = αr, and define the scaled

profit as Πy(y, α) = Π0(y/α, α).

For any given α, by Theorem 3, the optimal reserve price is unique, bidders bid truthfully at

the optimal reserve, and the optimal profit is given by Π0(max{r∗c (α), r̄(α)}, α) (with some abuse of

notation, we make the dependence on α explicit). The result follows by separately analyzing the two

possible cases: (1) r∗c (α) is the optimal reserve price; and (2) r̄(α) is the optimal reserve price. With

some abuse of notation, let G0(r, α) denote the expected expenditure-per-auction in the absence of

budget constraints when advertisers bid truthfully.

Case 1. Suppose that αηsG0(r∗c (α), α) < b, i.e., the expenditure at r∗c (α) does not exceed the

budget. Then r∗c (α) is the optimal reserve price. First, we study the dependence of the optimal reserve

value of the one-shot second-price auction on values. Let r∗c (α) be the optimal reserve price under

information α and opportunity cost c. Since, the optimal reserve price solves for 1/hv(α)(x) = x − c,
we get that r∗c (α) = σ(α)r∗c/σ(α), where r∗c is the reserve price at α = 1 and σ(1) = 1.
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We need to show that Π0(r∗c (α), α) = maxr≥0 Π0(r, α) is non-increasing in α. Or alternatively, by

using our scaling ασ(α) = 1 we need to show that

Π0(r∗c (α), α) = Πy(ασ(α)r∗c/σ(α), α) = Πy(r
∗
αc, α)

is non-increasing in α. Since r∗cα is the optimal reserve price for Πy and the budget constraint is not

binding, we may invoke the Envelope Theorem to get that

dΠy(r
∗
αc, α)

dα
=
∂Πy

∂α
(r∗αc, α) +

∂Πy

∂y
(r∗αc, α)

dr∗αc
dα

=
∂Πy

∂α
(r∗αc, α)

= −(λs)2η

∫ ∞
r∗αc

F̄ 2
v (x)

(
ξv(x)− 1

)
e−αλsF̄v(x) dx− cλsηF̄v(r∗αc)e−αλsF̄v(r∗αc),

where the third equation follows from differentiating under the integral sign, which is valid because

the derivative of the integrand is continuous on its domain. The IGFR assumption and the fact

that the optimal reserve price is increasing with the opportunity cost imply that for all x ≥ r∗αc,

ξv(x) ≥ ξv(r
∗
αc) ≥ ξv(r

∗
0) = 1 and hence the integrand above is positive. We conclude that the

derivative is negative.

Case 2. Suppose that αηsG0(r∗c (α), α) > b, i.e., the expenditure at r∗c (α) exceeds the budget. Then

r̄(α) = sup{r ≥ 0 : αηsG0(r, α) = b} is the optimal reserve price. Using the scaling and integrating by

parts, we obtain that the optimal reserve price r̄(α) satisfies the equation

b = αηsG0(r̄(α), α) = ηs

∫ ∞
αr̄(α)

F̄v(x)
(
ξv(x)− 1

)
e−αλsF̄v(x) dx. (11)

Now advertisers deplete their budgets in expectation and the publisher’s profit is given by

Π0(r, α) = λb− cη
(

1− e−αλsF̄v(αr)
)
.

Applying the change of variables y = αr, and defining ȳ(α) as the scaled optimal reserve price; we

obtain that the optimal profit is given by Π0(r̄(α), α) = Πy(ȳ(α), α). Taking derivatives w.r.t. the

matching probability we obtain

dΠy(ȳ(α), α)

dα
=
∂Πy

∂α
(ȳ(α), α) +

∂Πy

∂y
(ȳ(α), α)

dȳ(α)

dα
.

To conclude that the profit is non-increasing we shall show that both terms are non-positive. Indeed, the

partial derivative w.r.t. the matching probability is ∂Πy/∂α = −cλsηF̄v(ȳ(α))e−αλsF̄v(ȳ(α)) ≤ 0. Simi-

larly, the partial derivative w.r.t. the scaled reserve price is ∂Πy/∂y = cηαλsfv(ȳ(α))e−αλsF̄v(ȳ(α)) ≥ 0.

Finally, invoking the Implicit Function Theorem we get from equation (11) that the total derivative of
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the scaled optimal reserve price is

dȳ(α)

dα
= −

λs
∫∞
ȳ(α) F̄

2
v (x)

(
ξv(x)− 1

)
e−αλsF̄v(x) dx.

F̄v(y(α))
(
ξv(y(α))− 1

)
e−αλsF̄v(y(α))

≤ 0.

For the last inequality recall that, by assumption, r̄(α) > r∗c (α), which implies that ȳ(α) > r∗αc ≥ r∗0.

Using the IGFR assumption we obtain that ξv(y(α)) > ξv(r
∗
0) ≥ 1, and then both the numerator

and the denominator are non-negative. Hence, the optimal reserve price is non-increasing with the

matching probability.

Putting it all together. The optimal profit is given by

Π(α) = Π0(max{r∗c (α), r̄(α)}, α) = Πy(max{r∗αc, ȳ(α)}, α),

where Πy(y, α) is jointly continuous in y and α. From case 1 and 2, we know that that r∗αc is continuous

and increasing in α, while ȳ(α) is continuous and non-increasing in α. Thus, Π(α) is continuous in α;

r∗αc = ȳ(α) in at most one point; and the profit is non-decreasing in α. This concludes the proof.

D.6 Proof of Lemma 2

i.) Note that D = max(Ŵ1:M̂ , r) ≤ r+
∑M̂

k=1 Ŵk, and that advertisers shade their bids, i.e, Ŵθ ≤ Vθ.
Thus,

E[D] ≤ r + E

 M̂∑
k=1

VΘ̂k

 = r + E[M̂ ]E[VΘ̂] <∞,

where the equality follows from conditioning on the number of matching bidders and using that

bids are independent; and the last inequality because M̂ is Poisson with mean E[αΘλsΘ] < ∞,

and the expected valuation satisfies E[VΘ̂] =
∑

θ PΘ̂{θ}E[Vθ] <∞.

ii.) By Lemma 1(i), the distribution of the maximum competing bid when x ≥ r is given by Fd(x;µ) =

exp
{
−E[αΘλsΘ]

∑
θ p̂θF̄vθ((1 + µθ)x)

}
, where p̂θ = PΘ̂{θ}. Since the cumulative distribution of

values is differentiable, the distribution of the maximum bid is differentiable w.r.t. x and µ.

Indeed, its partial derivatives are given by ∂Fd/∂µθ = Fd(x;µ)E[αΘλsΘ]p̂θxfvθ((1 + µθ)x), and

∂Fd/∂x = Fd(x;µ)E[αΘλsΘ]
∑

θ p̂θ(1 + µθ)fvθ((1 + µθ)x). Moreover, the second derivatives of

the distribution of the maximum bid are continuous because densities fvθ(·) are continuously

differentiable.

By Lemma 1(ii), the expenditure function can be written as Gθ(µ, r) = rF̄vθ((1+µθ)r)Fd(r;µ)+∫ V̄
r xF̄vθ((1 + µθ)x) dFd(x;µ), which is clearly differentiable in r. Moreover, for any θ′ ∈ Θ

the first term is differentiable w.r.t. µθ′ , while the integrand is continuously differentiable. We

conclude by an application of Leibniz’s integral rule, which holds because [V , V̄ ]×U is bounded.
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iii.) The partial derivative of one first type’s expenditure w.r.t. her multiplier is

∂Gθ
∂µθ

= (I) + (II)

where

(I) =
∂

∂µθ

(
rF̄vθ((1 + µθ)r)Fd(r;µ)

)
= −r2fvθ((1 + µθ)r)Fd(r;µ) + rF̄vθ((1 + µθ)r)

∂Fd
∂µθ

(r;µ)

and

(II) =
∂

∂µθ

∫ V̄

r
xF̄vθ((1 + µθ)x)

∂Fd
∂x

dx

= −
∫ V̄

r
x2fvθ((1 + µθ)x)

∂Fd
∂x

dx+

∫ V̄

r
xF̄vθ((1 + µθ)x)

∂2Fd
∂µθ∂x

dx

= −
∫ V̄

r
x2fvθ((1 + µθ)x)

∂Fd
∂x

dx− rF̄vθ((1 + µθ)r)
∂Fd
∂µθ

(r;µ)

−
∫ V̄

r

∂

∂x

(
xF̄vθ((1 + µθ)x)

) ∂Fd
∂µθ

dx,

where the second equality follows from exchanging integration and differentiation, which is valid

from item (ii); the third from exchanging partial derivatives by Clairaut’s theorem, which holds

because the second partial derivatives are continuous almost everywhere; and the last from in-

tegrating the second term by parts and using the fact that F̄vθ((1 + µθ)V̄ ) = 0. Note that

increasing µθ decreases the bidder under consideration own bids, but also its competitors’ bids of

the same type through D. In what follows, we show that these effects are such that the expected

expenditure decreases.

In order to simplify the notation, we denote by fθ(x) , xfvθ((1 + µθ)x), F̄θ(x) , F̄vθ((1 + µθ)x),

and by 〈u, v〉 ,
∫∞

0 u(x)v(x)w(x) dx the inner product of two functions u and v with respect to

the weight w(x) , E[αΘλsΘ]Fd(x;µ). Using this new notation and canceling terms we can write

the partial derivative as

∂Gθ
∂µθ

= −
∑
θ′ 6=θ

(1 + µθ′)p̂θ′〈fθ, fθ′〉 − p̂θ〈fθ, F̄θ〉 − rfθ(r)Fd(r;µ), (12)

which is strictly negative.

iv.) The result follows by noting that F̄vθ((1 + µθ)x) = 0, for sufficiently large x.

v.) In the homogeneous case we have that G(µ, r) = G(0, (1 + µ)r)/(1 + µ) and the result follows

directly from (iv). In the heterogeneous case when r > 0 the result also follows directly. When
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r = 0 we have that

Gθ(µ, r) = E
[
DF̄vθ((1 + µθ)D)1{only one or more θ type bidders match}

]
+ E

[
DF̄vθ((1 + µθ)D)1{another type Θ′ matches, D > x}

]
+ E

[
DF̄vθ((1 + µθ)D)1{another type Θ′ matches, D ≤ x}

]
≤ 1

1 + µθ
E
[
(Vθ)1:M̂ F̄vθ((Vθ)1:M̂ )

]
+

E[V 2
θ ]

x(1 + µθ)2
+ xE

[
F̄vθ

(
1 + µθ
1 + µΘ′

VΘ′

)]
,

where in first term we used that D = (Vθ)1:M̂/(1 + µθ); the second term follows by Markov’s

inequality; and the third term because D ≥ VΘ′/(1 + µΘ′) and F̄vθ(·) is non-increasing. The

first two terms trivially converge to zero as µθ → ∞. The third term converges to zero from

Dominated Convergence Theorem because F̄vθ(·) ≤ 1, and limx→∞ F̄vθ(x) = 0.

D.7 Proof of Proposition 3

We denote by JH the Jacobian of vector-valued function H : R|Θ| → R|Θ|. A matrix A ∈ R|Θ|×|Θ| is

a P-matrix if the determinant of all its principals minors is positive, i.e., det(A|T ) > 0 for all T ⊆ Θ,

where A|T denotes the submatrix of A restricted to the indices in T .

i.) In this case JG = ∂G(µ, r)/∂µ, and the result follows directly from item iii.) of Lemma 2.

ii.) We prove the result in two steps. First, we characterize the entries of the Jacobian JG. Second,

we show that the Jacobian J−G = −JG is a P-matrix.

Step 1. In the proof of item iii.) from Lemma 2 we characterized the diagonal entries of the

Jacobian, that is, ∂Gθ(µ, r)/∂µθ. Using a similar notation, we characterize the off-diagonal

entries as follows.

We have that the partial derivative of the type θ expenditure w.r.t. the multiplier of type θ′ is

∂Gθ
∂µθ′

= rF̄v((1 + µθ)r)
∂Fd
∂µθ′

+
∂

∂µθ′

∫ V̄

r
xF̄v((1 + µθ)x)

∂Fd
∂x

dx

= rF̄v((1 + µθ)r)
∂Fd
∂µθ′

+

∫ V̄

r
xF̄v((1 + µθ)x)

∂2Fd
∂µθ′∂x

dx

= −
∫ V̄

r

∂

∂x

(
xF̄v((1 + µθ)x)

) ∂Fd
∂µθ′

dx

= (1 + µθ)p̂θ′〈fθfθ′〉 − p̂θ′〈fθ′F̄θ〉, (13)

where the second equality follows from exchanging integration and differentiation; and the third

from exchanging partial derivatives by Clairaut’s theorem, integrating by parts, and canceling

terms.
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Step 2. Next, we show that the Jacobian matrix of −G is a P-matrix. We denote by 1 the

low-type and by 2 the high-type. The Jacobian of G is given by

JG =

(
∂G1
∂µ1

∂G1
∂µ2

∂G2
∂µ1

∂G2
∂µ2

)
.

From item iii.) of Lemma 2 one concludes that the principal minors J |{1} and J |{2} are negative

(they are, in fact, negative scalars), so the corresponding principal minors of −G are positive.

The determinant of the remaining minor J |{1,2} is that of the whole Jacobian, which is given by

det(J) =
∂G1

∂µ1

∂G2

∂µ2
− ∂G1

∂µ2

∂G2

∂µ1

= (1 + µ1)p̂2
1〈f1f2〉〈f1F̄1〉+ (1 + µ1)p̂1p̂2〈f1f2〉〈f1F̄2〉

+ (1 + µ2)p̂1p̂2〈f1f2〉〈f2F̄1〉+ (1 + µ2)p̂2
2〈f1f2〉〈f2F̄2〉

+ p̂1p̂2〈f1F̄1〉〈f2F̄2〉 − p̂1p̂2〈f1F̄2〉〈f2F̄1〉,

where the third equation follows from substituting the expressions for the partial derivatives and

canceling two terms (here we assumed, without loss of generality, that r = 0 since the sum of

a positive diagonal matrix with a P-matrix is a P-matrix). Notice that all terms are positive

with the exception of the last one. We conclude that the determinant is positive by showing that

the fifth term dominates the last one. From positively homogeneous assumption we can write

fi(x) = xfv((1 + µi)x) = xhv((1 + µi)x)F̄v((1 + µi)x) = (1 + µi)
nxhv(x)F̄i(x). Defining a new

weight function w̃(x) = xhv(x)w(x) and using Cauchy-Schwartz inequality one gets that

〈f1F̄1〉〈f2F̄2〉 = (1 + µ1)n(1 + µ2)n〈F̄1F̄1〉w̃〈F̄2F̄2〉w̃
≥ (1 + µ1)n(1 + µ2)n〈F̄1F̄2〉w̃〈F̄1F̄2〉w̃ = 〈f1F̄2〉〈f2F̄1〉.

Hence, the corresponding principal minor of −G is also positive and the result follows.
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