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Abstract

We model callers’ decision making process in call centers as an optimal stopping problem.

After each period of waiting, a caller decides whether to abandon or to continue to wait. The

utility of a caller is modeled as a function of her waiting cost and reward for service. We use a

random-coefficients model to capture the heterogeneity of the callers and estimate the cost and

reward parameters of the callers using the data of individual calls made to an Israeli call center.

We also conduct a series of counterfactual analyses that explore the effects of changes in service

discipline on resulting waiting times and abandonment rates. Our analysis reveals that modeling

endogenous caller behavior can be important when major changes (such as a change in service

discipline) are performed, and that using a model with an exogenously specified abandonment

distribution may be misleading.

1 Introduction

Services cannot be stored and frequently cannot be produced without their customers. Thus, wait-

ing is an inevitable part of most service encounters. A growing number of customer contacts take

place in call centers, making them a dominant channel for encounters with waiting (Gans et al.

(2003), Aksin et al. (2007)). Customers dislike waiting, especially when it is in invisible queues as

in call centers. The dislike can be attributed to feelings such as anxiety, ambiguity and a sense

of wasted time (Suck and Holling (1997), Leclerc et al. (1995)). A natural consequence of such

feelings is that some customers lose their patience and abandon the queue before receiving service.

Caller abandonment reflects dissatisfaction and may lead to profit loss of the service provider. It

further affects performance metrics such as average waiting times. Understanding caller patience

is an essential first step in designing superior service encounters, which motivates the research in

this paper. We model wait or quit decisions by callers and estimate their patience by making use

of call center data on waiting and abandonment times.

A traditional approach to modeling reneging or abandonment in queues is by considering an

exogenous patience time distribution for customers. Thereby, customers abandon the queue when
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their perceived waiting time exceeds their patience (Gans et al. (2003) and references therein).

Frequently, the choice of the patience time distribution is driven by tractability concerns. A dis-

tribution is chosen that makes subsequent analysis possible, and its parameters are estimated from

historical data. A more recent stream of research focusing on call centers has emphasized the im-

portance of the direct use of data to fit patience time distributions (Brown et al. (2005)).

While the traditional approach lends itself to tractable analysis in many cases, it does not en-

able explicit modeling of patience. An alternative modeling approach has been to consider wait or

quit decisions by callers as the outcome of forward-looking behavior of utility maximizing rational

agents. With a utility function that consists of a reward from service and a linear delay cost,

forward looking customers either abandon upon arrival (i.e. balk) or not at all. In particular, no

caller abandons while waiting. As reviewed in Hassin and Haviv (2003), different assumptions are

required to induce rational abandonments while waiting. In Hassin and Haviv (1995), a reward

from service that may drop to zero induces rational abandonments. Mandelbaum and Shimkin

(2000) incorporate a fault state upon arrival, which means callers arriving in that state will never

be served. In this extended model, callers may abandon while waiting because they are worried

that they may be trapped in the fault state.

In a similar study, Shimkin and Mandelbaum (2004) consider nonlinear delay costs with no

fault state. Under suitable conditions on waiting costs, the authors study the equilibrium in which

callers decide upon arrival when to abandon. The abandonment times of the callers are optima of

their utility functions. In both Mandelbaum and Shimkin (2000) and Shimkin and Mandelbaum

(2004), the authors model the system as a Markovian queue with a general abandonment time

distribution (an M/M/m+G queue) and find the waiting time distribution of the callers resulting

from the equilibrium between the offered waiting time distribution of the system and the patience

time distribution of the callers.

The work of Mandelbaum and Shimkin is an important antecedent of this paper. Indeed, our

formulation builds on the following observation made by Shimkin and Mandelbaum (2004): “It is

plausible that abandonment decisions are taken online based on the customer’s assessment of the

current situation and the utility of further wait.”

In our model, callers receive a reward from service and incur a delay cost, which is linear in their

waiting time along the lines of Naor (1969). Moreover, callers are heterogeneous in their reward

and cost parameters, which is captured via a random-coefficients model. No information about the

duration of waiting is conveyed to the callers as they wait in the queue, i.e., there is no delay an-

nouncement. Callers are forward looking and make wait or abandon decisions dynamically as they

wait. To be more specific, we assume that the waiting cost is sunk, i.e., waiting cost incurred in

the past are irrelevant to future decisions. Hence, a caller only considers the expected future utility

associated with her actions. A caller’s utility depends on her reward, delay cost, and idiosyncratic

random shocks, representing (external) events that affect the callers’ utility. The idiosyncratic

shocks correspond to the unobserved variables in the empirical industrial organization literature,

see for example Rust (1987), which are observed by the caller but not recorded in the data. Using
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the terminology that is standard in the operations research literature, each caller solves an optimal

stopping problem where stopping corresponds to abandoning. We estimate callers’ cost and reward

parameters using the maximum likelihood estimation (MLE) approach.

The main contribution of this paper is to develop a simple model which endogenizes and ex-

plains the callers’ abandonment behavior. Using our model, we estimate the callers’ cost and

reward parameters and conduct a counterfactual analysis. More specifically, in a series of experi-

ments we change the service discipline of the call center and compare our model (with endogenous

abandonments due to forward looking callers) to a model where an exogenously specified aban-

donment distribution (obtained from the data) is used. For small changes, where we only change

the parameters of the existing priority scheme for example, the exogenous modeling appears to be

sufficient. However, the comparisons show the importance of endogenizing customer behavior in

settings where major policy changes are made.

Our model also makes a methodological contribution to the analysis of queueing systems with

abandonments. To the best of our knowledge, this is the first attempt of applying structural

estimation approach in the call center operations context. Furthermore, it is the first empirical

demonstration of the effect of modeling endogenous customer abandonment behavior in queues.

Indeed, our framework can be modified suitably to study various other queueing systems (with

abandonments), e.g., those arising in settings such as in the delivery of healthcare services, make-

to-order manufacturing, etc.

The rest of the paper is structured as follows. Section 2 reviews the literature. Section 3

characterizes the model of callers’ decision making process. Section 4 describes the data. Section

5 explains the estimation method, and provides the estimation results and their interpretation.

Section 6 describes the counterfactual analysis. Concluding remarks are offered in Section 7.

2 Literature Review

The behavioral aspects of waiting have been studied extensively. Mostly, waiting is shown to have

a negative effect on individuals. Leclerc et al. (1995) study whether people treat waiting as losing

monetary utility. In an experiment, they show that individuals’ marginal cost of waiting is a con-

cave function when the waiting time is large, e.g. 20 minutes to 5 hours. Suck and Holling (1997)

model the effect of waiting time duration and variability on stress caused by waiting. They show

that increase in either the duration or variability of the waiting time results in more stressful con-

ditions for the customers. Bitran et al. (2008) study the implications of the psychology of waiting

for the design of queuing systems and provide a comprehensive review.

The same waiting experience can have different effects on different people, depending on how

it is perceived. Indeed, a stream of research in the behavioral literature analyzes the effect of time

perception on callers’ behavior. Hornik (1984) studies the difference between the perceived waiting

time and the actual waiting time of the customers. The author verifies the existence of this differ-

ence empirically. Chebat et al. (1993) state that musical and visual cues, eg. playing music, may
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decrease customers’ perception of the time spent waiting and thus reduce customers’ dissatisfaction

from waiting. According to experiments in Munichor and Rafaeli (2007), a sense of progressing in

the queue enhances customers’ mood while waiting. In Zakay (1989), the author suggests that the

perceived waiting time is longer when a customer is more conscious about the passage of time. The

author also states that conveying the delay information may shorten the perceived waiting time

because it decreases the customer’s need to pay attention to the passage of time.

A growing literature studies the effect of delay information on callers’ behavior and performance

of the service center. We refer the reader to Whitt (1999), Guo and Zipkin (2007), Jouini et al.

(2011), Armony et al. (2009) and references therein for a detailed account of that literature. In the

data, no delay information is provided to callers, consistent with our model.

Apart from the delay information, instruments such as price can be used to control the cus-

tomers’ behavior and decision in waiting situations. Naor (1969) is one of the first papers in the

queuing context to model customers as utility maximizing agents whose actions can be modulated

via pricing. Naor models a system where imposing tolls affects customers’ decision to join the

queue or to balk. Mendelson (1985) studies how queueing delay and pricing change the behavior

of customers and their arrival rate. The author shows that a manager can maximize the value of

the services to the organization or minimize the costs by choosing the proper price and capacity.

A closely related area is the equilibrium analysis of abandonments by rational customers, who

maximize their utilities in choosing between waiting and abandoning. Zohar et al. (2002) provide

a model of rational abandonments suggesting that customers adapt their patience to their antici-

pated waiting time. The authors assume that customers’ patience follows a parametric distribution,

where its parameters are only affected by anticipated waiting time of the customers, and depends

on neither customers’ utility from receiving service nor their waiting cost. Hassin and Haviv (1995)

study the abandonment profile of rational customers in the setting of a single-server Markovian

queue with abandonments. The authors assume that customers’ waiting cost is linear and cus-

tomers’ utility from service becomes zero if they do not receive service within a fixed time beyond

arrival. The authors show that the optimal behavior of the customers is one of the two abandon-

ment profiles: abandoning upon arrival or abandoning when the service utility drops to zero.

As reviewed in the Introduction, Mandelbaum and Shimkin (2000) and Shimkin and Mandel-

baum (2004) analyze rational abandonment behavior of impatient customers in a Markovian queue

with a general abandonment time distribution (an M/M/m+G queue). In both papers, the authors

assume that the waiting cost and the service utility of the callers are given, and customers depending

on these parameters, act rationally and decide upon arrival when to abandon if they do not receive

service. Our work differs from Mandelbaum and Shimkin (2000, 2004). An important difference is

that in our model, callers make their decisions dynamically, not just upon arrival. In essence, each

caller solves an optimal stopping problem where “stopping” means abandoning. Another important

difference is that we do not undertake a queueing theoretical analysis to derive the equilibrium wait-

ing time. Rather, we deduce the equilibrium distribution of the waiting time from the observed

data, and assume that it is common knowledge among the callers and the call center provider;
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callers acquire this knowledge through their past experiences of contacting the call center.

We assume callers’ utility depends on waiting cost, reward and their idiosyncratic random

shocks, which resemble the random utility models one sees in the structural estimation literature,

cf. Berry et al. (1995). In that literature, two of the most relevant papers to our work are Rust

(1987) and Nair (2007). Rust (1987) studies the estimation of structural parameters of a regener-

ative optimal stopping model where a maintenance manager in each period of time has to decide

between two actions: replacing the engine of a bus and incurring the cost of overhaul, or not replac-

ing the engine and incurring the cost of unexpected failure. In Nair (2007), the author examines

the effect of consumers’ forward looking behavior on profit of the firms selling video games. The

author proposes a dynamic consumer choice model where consumers can buy the product and exit

the market, or wait to buy the product at a lower price. The author also models the profit of

the firm and suggests that firms may lose profit by not taking the forward looking behavior of the

callers into account while setting the prices. Similarly, our counterfactual analysis illustrates, how

disregarding endogenous abandonment behavior can lead to erroneous assessment of service levels,

while making choices of service discipline in a call center.

3 The Model

In this section, we present a dynamic model of caller’s decision process. In each period as callers

wait in the queue, they face the decision to either abandon or continue to wait. If a caller chooses

to abandon, she will do so immediately at the beginning of the period; if the caller chooses to wait,

she will stay in the system for that period. As the caller waits, she may enter service in which case

she incurs the waiting cost for that period, receives the reward associated with the service, and

exits the queue. Otherwise, the caller incurs waiting cost for that period and then decides again

whether to abandon or continue to wait as she enters the next period. We assume callers know the

probability of receiving service in period t conditional on not being served yet. Callers also know

that they will receive service before period T if they do not abandon. Furthermore, no information

about the duration of waiting is conveyed to the callers, i.e. there is no delay announcement.

In our model, callers are forward looking. In each period, they compare the expected utility of

waiting, which consists of utilities from the current and future periods and the expected utility of

abandonment, and then choose the action that maximizes their expected utility. We assume the

waiting cost is sunk, i.e. waiting costs incurred in the past are irrelevant to future decisions. Hence,

a caller only considers the expected future utility associated with her actions.

We next describe the model primitives. Let ci be caller i’s cost of waiting for one period and

ri be caller i’s reward from receiving service. The callers are heterogeneous in their rewards and

waiting costs. More specifically, the reward ri and the unit waiting cost ci of caller i are given by

ri = exp(mr + σry1i),

ci = exp(mc + σcy2i),
(1)
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where y1i and y2i are draws from independent and identical standard normal distributions. In other

words, callers’ reward and cost parameters have log-normal distributions. The parameters mr and

mc are the means for ln(ri) and ln(ci), respectively. Similarly, the parameters σr and σc are the

standard deviations for ln(ri) and ln(ci).
1

The utility of caller i from choosing action d in period t is given by

u(t, ri, ci, εit(d), d) = v(t, ri, ci, d) + εit(d), (2)

where εit(d) denotes the idiosyncratic shock incurred by choosing action d. The term v(t, ri, ci, d)

is the nominal utility and is independent of the idiosyncratic stochastic shocks. We let d = 1 if a

caller chooses to abandon in that period and zero otherwise.

Since caller i will exit the queue at the beginning of the period if she chooses to abandon, the

nominal utility of caller i abandoning in period t is zero, i.e.

v(t, ri, ci, 1) = 0. (3)

If caller i decides to wait, the nominal utility of waiting is given by

v(t, ri, ci, 0) = −ci + π(t)ri + (1− π(t))E
[

max
d∈{0,1}

u(t+ 1, ri, ci, εi(t+1)(d), d)

]
, (4)

where π(t) is the probability of receiving service in period t conditional on not being served yet and

π(T ) = 1, i.e. all callers receive service within T periods. We assume that π(·) is the equilibrium

outcome of the system, where callers correctly anticipate the service probabilities based on their

past experiences of contacting the call center. Furthermore, the probability of receiving service

π(·) is common knowledge among the callers. The first term on the right-hand side of (4) is the

waiting cost for the current period. The second term is the expected utility from receiving service

in period t. Finally, the last term is the future value of waiting. We refer to the expectation in (4)

as the integrated value function, denoted by V (t, ri, ci). The expectation is taken with respect to

the conditional distribution of εi(t+1) given εit, where ε stands for (ε(0), ε(1)). Assuming εit(d) is

iid across different callers, periods and actions, we denote caller i’s integrated value function as

V (t, ri, ci) =

∫ ∫
max
d∈{0,1}

u(t+ 1, ri, ci, ε(d), d)g(ε(0))g(ε(1))dε(0)dε(1), (5)

where g(ε(d)) is the pdf of the error term ε(d) for d = 0, 1.

Given ri and ci, caller i’s optimal decision in period t is given by

dit = arg max
d∈{0,1}

u(t, ri, ci, εit(d), d). (6)

The following proposition (see Appendix A for its proof) characterizes callers’ choice probabili-

1The mean and standard deviation of callers’ rewards are given by exp(mr + σ2
r/2) and exp(mr +

σ2
r/2)

√
exp(σ2

r) − 1, respectively. Similarly, for callers’ costs, these statistics are exp(mc + σ2
c/2) and exp(mc +

σ2
c/2)

√
exp(σ2

c ) − 1.
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ties under the assumption that the idiosyncratic shocks have iid type-I extreme value distribution.

(see Apendix A for the definition of this distribution). As explained in Rust (1987), this distribu-

tional form enables a closed form representation of the choice probabilities.

Proposition 1. Suppose that the idiosyncratic shocks εit(1) and εit(0) have iid type-I extreme value

distribution. Denoting by Pit(dit; ri, ci) the probability that caller i chooses action dit in period t,

we have

Pit(dit; ri, ci) =
exp(v(t, ri, ci, dit))

1 + exp(v(t, ri, ci, 0))
, (7)

where

v (t, ri, ci, dit) =

{
0 if dit = 1,

−ci + π(t)ri + (1− π(t))V (t, ri, ci) if dit = 0.
(8)

Moreover, caller i’s integrated value function for t < T is recursively given by

V (t, ri, ci) = log
(

1 + exp(−ci + π(t+ 1)ri + (1− π(t+ 1))V (t+ 1, ri, ci))
)
, (9)

and V (T, ri, ci) = 0.

4 Data

Our data set was generously made available to us by the Service Enterprise Engineering (SEE) lab

at the Technion (http://ie.technion.ac.il/Labs/Serveng/). It contains individual call level data as

well as agent data from a bank call center for a six month period between April and September

2008. The Call Center operates 24 hours per day, 7 days a week. It processes up to 85,000-90,000

calls a day on weekdays and 15,000-40,000 calls a day on weekends. There are 300-350 agents

working in the Call Center on weekdays and 50-175 agents during weekends.

Around 30,000-35,000 calls or 35%-40% of total arrivals are routed according to the agent skills.

The rest are IVR/VRU (interactive voice response/voice response unit, representing automated

response) calls. The center offers six types of services: private, securities, internet, other languages,

loans and solutions. The service type of a call can be observed in the data. Private calls (retail

banking) are the largest call type. These are the calls we focus on in our basic analysis. A pre-

liminary look at the data indicates that working days and weekends are significantly different in

terms of call traffic, server numbers and wait patterns. In our analysis, we choose to focus on the

working day calls.

The data traces each call from its entry to exit. Each call is broken down into subcalls. Entry

and exit times from each subcall are available. Calls are distinguished by the route they follow

within the call center (directly joining the queue, VRU and then joining the queue, other), and by

the outcome of the call (normal termination, transfer, disconnected, on ring, no agent, abandoned

short, abandoned, other unhandled). Calls joining the queue directly represent calls transfered from
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the branches or calls whose customer ID has not been identified. A definition of each outcome is pro-

vided in Table 1. Our analysis focuses on the route VRU and joining the queue, and the outcomes

normal termination, transfer, abandoned short and abandoned, which consist of more than 80% of

the observations. Since our model does not consider multi-stage service and intermediate waits by

customers, we restrict our analysis to the first subcall, which consists of waiting in the queue and

talking to the first agent. The callers do not receive any delay announcements, but may receive in-

formation announcements (working hours, etc.) and marketing announcements, or listen to music.

Code Outcome Description

1 Normal terminations The caller receives service and then terminates the call

2 Transfer Call was transferred to another agent or unit

3 Disconnected Customer has terminated the call while on hold or because
the agent made log-off

4 On Ring Agent did not pick up the phone

5 No Agent Agent has finished his shift without log-off from and phone
system continues sending the incoming calls to this agent

11 Abandoned Short A call placed into queue was abandoned with the wait time
less than 5 seconds

12 Abandoned A call placed into queue was abandoned with wait time larger
or equal 5 seconds

13 Other Unhandled A call placed into queue did not reach the agent by unknown
reason (mainly because of hardware malfunctioning)

Table 1: Definitions of the outcomes.

Customers in this call center have different priorities in the queue. There are four levels of pri-

ority: high, medium, low, and no priority. The no priority calls are those that cannot be associated

with a customer at the point of entry, and are thus treated as having no priority, which corresponds

to the lowest priority. We observe the priority group of each caller from the data.

Depending on the caller’s priority type, each caller receives a priority point upon arrival. The

priority point of a customer is updated dynamically as the customer waits in queue. These priority

updates are performed after every 60 seconds of waiting. The updates in priority points occur such

that higher priority calls receive higher increases in their priority points relative to lower priority

calls. While for the same waiting duration a call with a higher priority type always has higher

priority points, a lower priority type caller who has waited a long time may have higher priority

points than a newly arriving high type caller due to the dynamic priority point updates. We observe

the effect of these dynamic priority increases in waiting time histograms. In particular, we observe

peaks at multiples of 60 seconds, corresponding to the dynamic priority point updates. An example

for medium priority calls on May 12, 2008, in Figure 1 illustrates the pattern.

Dynamic priority updates are not recorded in the data. Although we know the update mecha-

nism, we do not make use of this in our estimation. Rather, we use the resulting service probabilities

directly as estimated from the data. This estimation is described in the following section.

The average arrival pattern for calls on working days are shown in Figure 2. In order to focus

on the relatively busy hours of the day, we restrict our analysis to calls between 9 a.m. and 2 p.m.

on each working day.
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Figure 1: Waiting time histogram for medium priority calls on May 12, 2008.

Figure 2: Average arrival pattern for calls in the working days.

The abandonment rate during the day for July 17, 2008, is plotted in Figure 3. This pattern

suggests that there may be different staffing patterns during different times of the day. We verify

this by making use of available agent data. Figure 4 provides average staff numbers during the

day on Mondays (other working days exhibit a similar pattern), showing that the time interval we

focus on represents a highly staffed interval, thus ensuring reasonable abandonment rates.

Finally, we focus on calls with a wait duration ranging between zero and 960 seconds. Calls

with waiting times longer than 960 seconds constitute fewer than 0.01% of our observations, and

have been eliminated to reduce the length of the time horizon in our estimation. Data from weeks

with a holiday were excluded from the analysis (these are April 20-26, May 4-10, June 8-14, and

September 28-30) as potential outliers.

In summary, our analysis focuses on 1,323,071 calls with the private service type, received on

working days during weeks without a holiday in the interval April-September 2008, between 9 a.m.

and 2 p.m., having entered the system through the VRU and proceeded to a wait in the queue, and

having normal termination, transfer, short abandonment and abandonment as an outcome. We are
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Figure 3: The pattern of average abandonment rate for July 17, 2008.

Figure 4: Average agent numbers on Mondays.

focusing on the subcall starting with the wait in the queue and including the encounter with the

first agent. The summary statistics for this portion of the data are given in Table 2.

Priority group Number of
observations

Abandonment
rate

Average wait-
ing time (sec.)

Average waiting
time (abandoned
calls) (sec.)

Maximum
waiting time
(sec.)

High priority 184,722 2.12 % 18.83 71.73 857

Medium priority 516,685 3.68 % 42.19 108.58 958

Low priority 253,963 6.66 % 72.02 123.25 949

No priority 367,701 24.65 % 96.20 100.31 960

Sum 1,323,071

Table 2: Summary statistics for the portion of the data used in the analysis.

5 Estimation

In this section, we first discuss the identification of callers’ parameters from the data. Next, we

describe the estimation methodology and results. Finally, we discuss the cross validation and out-
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of-sample tests to examine the ability of our model to predict callers’ abandonment behavior.

Identification. As will be seen below (Figure 5), our data exhibit significant intertemporal

variation in the service probabilities π(t). This observation along with the fact that waiting times

vary across different callers (see Figure 7) allows us to identify the reward and cost parameters,

separately. To see the intuition behind this, note from equations (7)-(9) of Proposition 1 that the

probability of abandoning in period t depends on the terms {π(s)ri − ci}s=t..T , and is given by

Pit(1; ri, ci) = ψt(π(t)ri − ci, π(t+ 1)ri − ci, ..., π(T )ri − ci), (10)

where ψt is a suitably defined function that does not depend on ri and ci. Equation (10) shows that

if there were no variation in π(t), i.e. π(t) = π for all t, then we could only identify the difference

between πri and ci. This follows because the abandonment probability Pit(1; ri, ci) would then be

solely a function of πri−ci, which would prevent the identification of the reward and cost parameters

separately. However, since callers’ waiting time exhibits sufficient variability, we can identify the

abandonment probabilities in each period as given in (10) from which we can identify the reward

and cost parameters separately given the intertemporal variation in service probabilities π(t).

Figure 5: The service probabilities of the priority groups in the data.

Moreover, heterogeneity in callers’ cost and reward (i.e. σr, σc) is identified by the variation in

the abandonment behavior of callers in a given period. To see this, consider N callers who have

waited for t periods; and recall that the abandonment probability in period t is given by (7). If

there is no heterogeneity (i.e. σr = σc = 0) then each caller has the same abandonment probability.

Hence, the total number of abandonments in period t is a Binomial random variable. In contrast,

under heterogeneity, callers will have different abandonment probabilities, and total number of

abandonments in period t is the sum of N binary random variables where success probabilities

are random variables (as determined through ri, ci in equations (1) and (7)). Therefore, the total
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number of abandonments in period t exhibits more variation under heterogeneity. In other words,

the degree of variation (or volatility) in callers’ abandonment behavior helps us identify the variance

parameters σr, σc. Nonetheless, note that our model is flexible enough to allow σr = σc = 0. Indeed,

we find that this is the case for all but no-priority callers (Table 3).

Estimation Methodology and Results. The estimation of callers’ parameters is carried out

in two stages. We first estimate the probability of receiving service π(t). Next, given the probability

of receiving service, we construct the likelihood function of callers’ observed decisions in the data

and maximize it to estimate the parameters.2

We estimate π(t), the probability of receiving service in period t conditional on not being served

yet, directly from the data. This direct approach allows us to capture all operational aspects of the

call center for the interval of analysis. Given the cumulative distribution of a caller’s waiting time

(time spent in the queue before receiving service), denoted by F , π(t) is given by

π(t) =
F (t+ 1)− F (t)

1− F (t)
. (11)

To estimate the waiting time distribution of the callers, we use the Kaplan-Meier estimator (Kaplan

and Meier (1958)). This estimator is used to find the survival time distribution when the data is

censored, which is the case herein due to the presence of abandonments. See Appendix B for details.

Next, we describe the maximum likelihood estimation problem of callers’ parameters given the

service probabilities π(t) for t ≥ 1. Recall that callers are indexed by i = 1, ..., N , where N is

the total number of callers in the data, and that ri and ci are given in (1) where y1i and y2i are

standard normal random variables. Let τi denote the last period in which caller i decides between

waiting and abandoning. Also let {dit : t = 0, 1, ..., τi} denote the observed actions of caller i where

dit is the action of caller i in period t.

Recall that Pit(dit; ri, ci) denotes the probability of choosing the action dit by caller i in period

t. Let Θ = (mr,mc, σr, σc) denote the vector of structural parameters to be estimated. With the

assumption that ri and ci have lognormal distributions, the likelihood of observing the sequence of

actions {dit : t = 0, 1, ..., τi} by caller i is given by

`i(Θ) =

∫ ∫ τi∏
t=0

Pit(dit; ri, ci)φ(y1i)φ(y2i)dy1idy2i

=

∫ ∫ τi∏
t=0

Pit(dit; exp(mr + σry1i), exp(mc + σcy2i))φ(y1i)φ(y2i)dy1idy2i,

(12)

where φ(·) is the pdf of the standard normal distribution. The likelihood function of the entire

2This is similar to the approach taken in Rust (1987), where the author first estimates the transition probabilities in
mileage directly from the data, and then uses those fixed transition probabilities to estimate the structural parameters.
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sample is then the product of individual caller’s likelihood and is defined as follows:

L(Θ) =
N∏
i=1

`i(Θ)

=

N∏
i=1

∫ ∫ τi∏
t=0

Pit(dit; exp(mr + σry1i), exp(mc + σcy2i)) φ(y1i) φ(y2i) dy1i dy2i.

(13)

The estimation problem is to choose the structural parameters Θ to maximize the log-likelihood

function logL(Θ) with the integrated value function (9) as constraints (Su and Judd (2012)). To

be more specific, the formulation of the estimation problem is given below.

maximize
Θ,V (t,·,·)

logL(Θ) =

N∑
i=1

log

(∫ ∫ τi∏
t=0

Pit(dit; ri, ci)φ(y1i)φ(y2i)dy1idy2i

)
subject to for all i = 1, . . . , N :

∀ t : Pit(dit = 1; ri, ci) =
1

1 + exp(−ci + π(t)ri + (1− π(t))V (t, ri, ci))
,

∀ t : Pit(dit = 0; ri, ci) =
exp(−ci + π(t)ri + (1− π(t))V (t, ri, ci))

1 + exp(−ci + π(t)ri + (1− π(t))V (t, ri, ci))
,

∀ t : V (t, ri, ci) = log
(

1 + exp(−ci + π (t+ 1) ri + (1− π (t+ 1))V (t+ 1, ri, ci))
)
,

V (T, ri, ci) = 0,

ri = exp(mr + σry1i),

ci = exp(mc + σcy2i),

σr, σc ≥ 0.

(14)

In the estimation, we assume that each caller makes the decision every five seconds. Thus, the

maximum number of periods in our model is 192 (= 960/5). Since our data is more granular, we

truncate the abandonment times downward and service initiation times that happen in a period

upward, consistent with our modeling assumptions in Section 3.

We solve the maximum likelihood estimation problem (14) using the nonlinear optimization

solver, KNITRO (Byrd et al. (2006)) with AMPL interface. We use 50 randomly generated starting

points for finding a better estimate. To approximate the 2-dimensional integration in the likelihood

function over y1i and y2i, we use Gauss-Hermite integration (Judd (1998)). We choose 5 points in

each dimension and approximate the integral by the weighted sum of the likelihood values at the

resulting 25 nodes in the 2-dimensional space associated with the pair (y1i, y2i). For further details,

see Appendix C. We also conduct a Monte-Carlo experiment to show that our estimation method

can recover the true parameter values; see appendix D for details.

Our empirical analyses focus on four priority groups within the private service group as described

in Section 4. For each priority group, the corresponding probability of service π(t) is estimated

directly from the data. Note that the direct estimation of the service probabilities π(·) allows us

to capture the interaction between the different priority callers in the queue. We estimate the

parameters of each priority group separately. The estimated parameter values and standard errors
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(shown in parentheses) are reported in Table 3. To compute standard errors, we use the parametric

bootstrap method (Horowitz (2001)). We generate 100 simulated data sets with the same size as

the real data from the estimates. We then estimate parameters of the simulated data sets and

compute the standard errors. We report in Table 4 the mean and standard deviation for callers’

rewards and costs for each priority group, which are calculated from the estimates in Table 3 using

the formulas in Footnote 1.

Priority group mr mc σr σc

High Priority
1.842 –2.420 7.16E–06 2.89E–05

(0.011) (0.089) (0.028) (0.156)

Medium Priority
1.820 –3.166 7.39E–06 5.46E–05

(0.009) (0.070) (0.027) (0.140)

Low Priority
1.667 –10.000 5.69E–06 1.09E–03

(0.006) (1.517) (0.032) (0.912)

No Priority
1.426 –7.420 0.152 2.379

(0.006) (0.219) (0.006) (0.079)

Table 3: The estimation results.

Priority group r-Mean ($) c-Mean ($/minute) r-St.Dev. c-St.Dev.

High Priority 6.309 1.067 4.52E–05 3.09E–05

Medium Priority 6.175 0.506 4.56E–05 2.76E–05

Low Priority 5.299 5.45E–04 3.02E–05 5.91E–07

No Priority 4.211 0.122 0.645 2.057

Table 4: The mean and standard deviation for callers’ rewards and costs.

As can be seen in Table 4, mean reward parameters increase with the priority level although

they are comparable in magnitude. Similarly, the mean cost parameters are higher for the high

and medium priority groups. This suggests the high-priority callers are less patient. The waiting

cost is negligible for the low priority group. Recall that the maximum waiting time in the data

is about 15 minutes. The negligible cost parameter for the low priority callers suggests that they

do abandon not because of high waiting costs but rather because of external events as modeled

by the random shocks. Interestingly, the waiting cost for the no-priority callers is nonzero. Recall

that the no-priority calls cannot be associated with a customer at the point of entry, and hence,

contains a mix of delay-sensitive and non-delay-sensitive callers. The mean waiting cost captures

the average of this heterogeneous group and is therefore, higher than that of the low priority

group. Note, however, that our random-coefficients model is rich enough to accurately capture this

heterogeneity and reflects its implications in the counterfactual analysis.

The negligible variance estimates for the high, medium, and low priority groups suggest that

callers in these group are rather homogeneous. In other words, the call center provider was successful

in segmenting the callers to these groups. On the other hand, the estimates for the no priority group

suggest significant heterogeneity within this group, which is consistent with the fact that callers in

this group are not identified by the system and may also be new customers. This observation calls

for further efforts to better identify and segment the no-priority group.
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Cross Validation and Out-of-sample Tests. We use 10-fold cross validation with strat-

ification to examine the ability of the model to predict the abandonment behavior of the callers

(Kohavi (1995)). The validation is done for each priority group in isolation.

Let Paban(t) denote the ex-ante probability of abandoning in period t, which is given by

Paban(t) =


(1− F (0))

∫ ∫
Pi0(1; ri, ci)φ(y1i)φ(y2i)dy1idy2i if t = 0,

(1− F (t))

(∫ ∫ (t−1∏
s=0

Pis(0; ri, ci)

)
Pit(1; ri, ci)φ(y1i)φ(y2i)dy1idy2i

)
if t > 0.

(15)

The callers’ decisions to abandon in each period are independent from each other. Therefore,

the predicted number of abandonments in period t has a binomial distribution. Let maban(t)

and σaban(t) denote the mean and standard deviation of this distribution, respectively. Then

maban(t) = NPaban(t) and σaban(t) =
√
NPaban(t)(1− Paban(t)). Moreover, the predicted number

of aggregate abandonments is
∑T−1

t=0 maban(t) = N
T−1∑
t=0

Paban(t). Denote by aaban(t) the actual

number of abandonments in period t.

We consider the relative and absolute errors in predicting the aggregate abandonment rates as

the performance metrics for the cross validation. Note that

Relative Error =
|
∑T−1

t=0 maban(t)−
∑T−1

t=0 aaban(t)|∑T−1
t=0 aaban(t)

, (16)

Absolute Error =
1

N
|
T−1∑
t=0

maban(t)−
T−1∑
t=0

aaban(t)|. (17)

The averages of the performance metrics across all test sets are shown in Table 5, which show that

our estimates are fairly accurate.

Priority group Relative Error Absolute Error

High Priority 0.29 % 6.15E–03 %

Medium Priority 0.05 % 1.86E–03 %

Low Priority 0.04 % 2.35E–03 %

No Priority 0.15 % 0.03 %

Table 5: The averages of the performance metrics across all test sets.

A more detailed comparison of the predicted and actual abandonments is provided in Figure

6. In addition to maban(t) and σaban(t), it also shows maban(t) ± 2σaban(t) over time, which helps

assess the accuracy of the prediction in relation to the inherent variability of the abandonments, as

captured by σaban(t).

In addition to the cross validation study, we also perform several out-of-sample tests to illustrate

the accuracy of the estimation. To this end, we first split the data across weeks into two samples.

The first half is used to estimate the model, whereas the second half is used for prediction and

testing its accuracy. The results for different priority groups are shown in Table 6.
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Figure 6: The predicted abandonments maban(t), actual abandonments aaban(t) and maban(t) ±
2σaban(t) over time for the priority groups.

Priority group Relative Error Absolute Error

High Priority 20.02 % 0.38 %

Medium Priority 8.91 % 0.26 %

Low Priority 5.47 % 0.32 %

No Priority 3.72 % 1.03 %

Table 6: Out-of-sample testing of the model across different weeks.

As can be seen in Table 6, the estimates from the first half of the data produce fairly accurate

predictions for the abandonments observed in the second half of the data. It is interesting to note,

however, that because the abandonment rate is small for the high priority group, even a small

prediction error is magnified under the relative error metric. Hence, although the relative error

may seem high for the high priority group, the corresponding absolute error is small (Table 6).

Next, we repeat the out-of-sample testing for different hours of the day. We use peak-hours

data (9 am-2 pm) to estimate the parameters reported in Tables 3 and 4, and use those parameters

to predict the abandonments during off-peak hours.3 More specifically, we consider two off-peak

periods: 2-6 pm and 6-10 pm. The prediction results for 2-6 pm and 6-10 pm are shown in Tables

7 and 8, respectively.

Although the predictions of the model for 2-6 pm (based on the peak-hours estimates) are accurate

(see Table 7), they are not as accurate for 6-10 pm. However, this discrepancy can be explained by

3In the prediction, the service probabilities π(t) for the relevant hours are used.
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Priority group Relative Error Absolute Error

High Priority 14.00 % 0.46 %

Medium Priority 4.04 % 0.18 %

Low Priority 10.90 % 0.76 %

No Priority 9.40 % 2.30 %

Table 7: Out-of-sample testing of the model across peak (9 am-2 pm) versus off-peak (2-6 pm)
hours.

Priority group Relative Error Absolute Error

High Priority 50.77 % 2.99 %

Medium Priority 15.69 % 1.41 %

Low Priority 16.21 % 2.11 %

No Priority 12.77 % 5.36 %

Table 8: Out-of-sample testing of the model across peak (9 am-2 pm) versus off-peak (6-10 pm)
hours.

the differences in caller demographics in different hours. Our hypothesis is that the callers in 2-6 pm

are similar to the callers in peak hours, whereas those calling during 6-10 pm are less similar to the

peak-hour callers. Therefore, the reward and cost parameters and, consequently, the abandonment

behavior of the callers during peak hours are more similar to those of the callers who contacted

during 2-6 pm.

To asses the similarity of callers during different hours, we adopt the Bhattacharyya distance

(between probability distributions), which is widely used in the information theory literature (Bhat-

tacharyya (1943)). To be specific, for discrete probability distribution p and q over the domain X,

the Bhattacharyya distance is given by

DB(p, q) = − ln(
∑
x∈X

√
p(x)q(x)),

see for example, Kailath (1967) and Basseville (1989). In our context, probability distributions

p and q correspond to the identity of a random caller during peak hours and off-peak hours,

respectively. To be more specific, p(x) denotes the probability that a randomly selected peak-hour

caller is caller x. In our data set callers in high, medium and low priority groups are identified.

Therefore, we can calculate the distance for those priority groups to assess the similarity of the

callers in different hours as shown in Table 9.

Priority group Distance between peak
callers and callers in 2-6 pm

Distance between peak callers
and callers in 6-10 pm

High Priority 0.20 0.48

Medium Priority 0.29 0.47

Low Priority 0.35 0.53

Table 9: Bhattacharyya distance for comparing caller similarity in peak versus off-peak hours.

Interestingly, the distances in Table 9 show that callers during peak hours are more similar to

those calling during 2-6 pm (in the sense of overlap) than those calling in 6-10 pm. This explains
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the contrast between the prediction accuracies reported in Tables 7 and 8. In conclusion, the out-

of-sample tests provide further support that our model gives good predictions provided that the

caller demographics in the two samples are similar.

Building on the estimation results, in the next section, we provide a counterfactual analysis to

assess the impact of policy changes.

6 Counterfactual analysis

This section provides a simulation study of the call center using the estimated reward and cost

parameters. The ultimate objective is to perform what if analyses to assess the impact of changes

in service discipline. The aforementioned assumptions will be maintained throughout this section

unless stated otherwise.

The simulation study is constructed along the lines of the usual discrete-event simulations.

However, it has a novel feature in that the callers decide dynamically to abandon or to continue

to wait by computing their expected utilities under each choice. Consistent with Section 5, in the

simulation the callers make their decision to wait or to abandon every 5 seconds. Consequently, the

unit of time in the simulation is 5 seconds. The expected utility computation on the callers’ part

requires the knowledge of the equilibrium service probabilities (π(t), t ≥ 0). Although these can

be computed readily from the data for the current service discipline, they need to be recalculated

when a new service discipline is considered. Computing these equilibrium service probabilities (for

a new policy) seems intractable analytically. Therefore, we use the following iterative procedure

which seems to work well. First, given a new policy we simulate the system as if no one abandons

to obtain an estimate of service probabilities (π0(t), t ≥ 0). In the next step, we allow the callers

to abandon using π0(·), and simulate the system to get the new estimates of service probabilities

(π1(t), t ≥ 0). We repeat this procedure until the average waiting time and abandonment rate

converge for all priority groups.

The first step of the simulation study is to reconstruct the existing as is performance of the call

center. However, there are challenges to perform this task accurately. The difficulty stems in part

from the variation in the data across different days (due to inherent uncertainty). Therefore, we

choose to replicate the aggregate performance over all days, which presents challenges too, mainly

because it is not immediately clear what number of agents should be used in our simulation. In

particular, the number of agents in the data vary across days (and hours within a day). Moreover,

the agents handle not just the first subcalls we focus on but also the subsequent subcalls (in addi-

tion to other types of calls we do not consider). Consequently, to determine the number of agents

we vary the number of agents between 105 and 165. We pick the number of agents to be 133,

for which the waiting time and abandonment statistics are closest to those in the data.4 In what

4Under each staffing level being considered, the waiting time and abandonment rate for each priority group is
simulated. These values are compared to the values observed in the aggregated data, and a weighted relative error,
where weights are taken as the size of the priority groups relative to the size of the entire data, is considered as the
comparison metric.
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follows, this constitutes the base case for our simulation study.

The simulated system consists of four queues and one pool of agents. Each queue corresponds

to one of the priority groups in the data. Recall that the service discipline currently used by the call

center is a periodic point-update priority policy. In the simulation, this policy is used to determine

priority points of callers as a function of their priority type and waiting time. The periodicity of the

priority updates is also reflected in the waiting time histograms of the various groups as shown in

Figure 7. The simulation of the current policy yields a similar pattern of periodicity, cf. Figure 8.

Figure 7: The waiting time histograms of the priority groups in the data.

Figure 8: The waiting time histograms of the priority groups in the simulation results of the current
policy.

To illustrate the usefulness of our approach, we consider assessing the impact of policy changes

to the service discipline. To this end, in addition to the current policy we consider the following
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policies:5 First-come-first-served (FCFS) policy, a static (and non-preemptive) priority policy, a

threshold policy and the reversed strict priority policy. Under the FCFS policy, calls are served in

the order they arrive irrespective of their group. The static priority policy gives the highest priority

to the “high-priority” group, next to the “medium-priority” group, then to the “low-priority” group.

The lowest priority is given to the “no-priority” group. The threshold policy acts like the static

priority policy when the number of “no-priority” calls waiting is less than or equal to the threshold.

Otherwise, the “no-priority” calls have the highest priority while the other groups preserve their

relative priority levels amongst themselves. Finally, under the reversed strict priority policy, the

priority order of the groups in the static priority policy is reversed. The average waiting times and

the abandonment rates under these policies are given in the top panel of Table 10. As expected

the waiting times under the FCFS policy are similar across different priority groups though the

abandonment rates differ.

Endogenous model

Policy
High priority Medium priority Low priority No priority
sec. % Ab. sec. % Ab. sec. % Ab. sec. % Ab.

Current policy 5.49 0.22 17.13 0.91 64.56 6.25 147.29 37.67

FCFS policy 80.67 7.51 83.23 5.39 83.47 8.18 75.78 23.32

Static priority policy 5.46 0.22 8.47 0.39 24.39 2.46 183.69 41.77

Threshold policy (th = 15) 7.02 0.28 17.82 0.90 265.50 21.55 82.16 24.97

Threshold policy (th = 5) 7.66 0.34 23.36 1.17 517.47 37.78 32.59 11.10

Reversed strict priority policy 89.06 62.98 41.08 2.45 7.68 0.77 5.46 1.94

Exogenous model

Policy
High priority Medium priority Low priority No priority
sec. % Ab. sec. % Ab. sec. % Ab. sec. % Ab.

Static priority policy 5.37 0.73 8.26 0.86 23.64 2.48 160.61 40.51

Threshold policy (th = 15) 7.07 0.91 17.91 1.89 236.75 24.42 82.49 20.70

Threshold policy (th = 5) 7.54 1.09 22.54 2.31 366.47 38.29 32.61 8.28

Reversed strict priority policy 397.79 57.66 39.55 4.12 8.29 0.83 5.85 1.45

Table 10: Average waiting times and abandonment rates of different caller groups under various
service disciplines for the endogenous and the exogenous models. For each group, the first and the
second column show the average waiting times and the abandonment rates, respectively.

Recall that the callers are forward looking in our model and their behavior may change as the

service discipline changes. To shed light on this, we also consider modeling callers’ abandonment

behavior using an exogenous time-to-abandon distribution. To this end, we first estimate the exoge-

nous distribution from the data. Since the abandonments are censored (by callers’ entering service),

we use the Kaplan-Meier estimate. The hazard rates of time-to-abandon are as shown in Figure 9.

Treating these as if they were constant, we use a geometric distribution for the time-to-abandon,

where the probability of abandonment is estimated using the 25% quartile of the Kaplan-Meier

estimate of the cumulative distribution function.6 The lower panel of Table 10 shows the average

5We also considered changing the frequency and the size of priority point updates to the current policy. The
frequency changes did not change the average waiting times or abandonment rates. The impact of changes to the
size of updates were as one would predict.

6Brown et al. (2005) observes that the Kaplan-Meier estimates may be biased under heavy censoring. Therefore,
following Brown et al. (2005), we use the first quartile when estimating the probability of abandoning.
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waiting times and the abandonment rates resulting from the model with exogenous abandonment

distribution under the static priority, the threshold and the reversed strict priority policies.

Comparisons between the endogenous model with strategic customers and the model using an

exogenous time-to-abandon lead to the four major observations below.

Figure 9: Hazard rates of the priority groups for time-to-abandon in the data.

First, if a caller has a negligible waiting cost, her probability of abandoning decreases as the ser-

vice probability gets worse. For such callers, the exogenous model will underestimate waiting times

relative to the endogenous model, under policies that deteriorate service probability for these callers.

As can be seen from Table 10, the “no-priority” group suffers from long waiting times and high

abandonment rates under the current policy or the static priority policy. Recall that callers in this

group are unidentified and some are new customers. Therefore, the call center may wish to improve

the service quality they receive for retention purposes. Although there is a large number of alterna-

tives for improving the service quality of “no-priority” callers, we focus attention on the threshold

policy (described above) for simplicity. Setting the threshold at 15 improves the waiting times and

lowers the abandonment rates somewhat for the “no-priority” group. For the “low-priority” group,

this leads to significantly higher waiting times and abandonment rates, cf. the top panel of Table

10. (The impact on the other two groups is small.)

Under the threshold policy (with 15 as the threshold) the model with exogenous abandonment

distribution underestimates the service degradation to the “low-priority” group (in terms of waiting

times, 236.75 sec versus 265.50 sec); see Table 10.7 Next, we clarify the source of discrepancy for

the “low-priority” group (which sheds light onto what happens to other classes as well). Recall

that the delay cost c is negligible for the “low-priority” group, cf. Table 4. Substituting c = 0 in

Equation (9) shows that the integrated value function V (t) > r for all t. Then it is straightforward

to conclude from Equations (7)-(8) that as the service quality worsens (i.e. π(t) decreases), the

probability of abandoning decreases. Intuitively, as the service probability decreases the probabil-

7To test the significance of the differences between the results of the exogenous and the endogenous models, we
use the two-sample t-test (Snedecor and Cochran (1989)). Under the threshold policy with 15 as the threshold for the
average waiting time of the “low-priority” callers, the difference is significant with 90% confidence (t-statistic=1.75).
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ity of getting served in later periods increases, and the callers are willing to wait longer to receive

service (because their waiting costs are negligible). The decreased abandonment probability and

the service degradation lead to higher queue lengths.

Given this observation, comparing the current policy with the threshold policy (with 15 as the

threshold) reveals that the service quality gets worse for the “low-priority” calls when switching

from the current policy to the threshold policy, cf. the top panel of Table 10. Hence, we expect lower

probability of abandoning, i.e. callers abandon more slowly (especially early on). This, in turn,

leads to longer queue lengths and waiting times. Figure 10 shows the abandonment probability of

the “low-priority” callers under the current policy and the threshold policy with 15 as the threshold.

On the other hand, in the model with exogenously given abandonment distributions, callers’ aban-

donment probability is estimated from the current policy, which is higher than that in our model.8

Thus, in the exogenous model callers abandon sooner which leads to lower waiting times. There-

fore, the prediction of the model with exogenous abandonment distribution can be off substantially.

This is demonstrated further by setting the threshold to 5 (366.47 sec versus 517.47 sec).9

Figure 10: Abandonment probability of the low priority callers in the endogenous model under the
current policy and the threshold policy with 15 as the threshold.

Second, if a caller has a significant waiting cost, her probability of abandoning increases as the

service quality degrades. For such callers, the exogenous model will overestimate waiting times rel-

ative to the endogenous model, under policies that deteriorate service probability for these callers.

The fact that the probability of abandoning goes down as the service quality degrades for the

“low-priority” group (in our model) may seem counterintuitive at first. However, what drives this

is the fact that the delay cost for the “low-priority” group is negligible. Indeed, if callers have

significant delay costs, the implication will be different. More specifically, for the “high-priority”

group, the comparisons under the reversed strict priority policy show the model with exogenous

8Moreover, the abandonment probability estimated from the data is extrapolated beyond what is observed under
the current policy.

9Under the threshold policy with 5 as the threshold for the average waiting time of the “low-priority” callers,
the difference between the results of the exogenous and the endogenous models is significant with 90% confidence
(t-statistic=9.28).
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abandonment distribution significantly overestimates the waiting times and somewhat underesti-

mates the abandonment rates (397.79 sec versus 89.06 sec and 57.66% versus 62.98%).10

Switching to the reversed strict priority degrades the service quality for the “high-priority”

group. The model with exogenous abandonment distributions works precisely as explained above.

In contrast, given positive delay costs, callers anticipate the significant future delay costs (embed-

ded in the integrated value function) in our model and they choose to abandon early with high

probability. This effect is illustrated in Figure 11, which shows the abandonment probability of the

“high-priority” callers under the current policy and the reversed strict priority policy. This effect

leads to significantly shorter queue lengths and waiting times than those in the model with exoge-

nous abandonments. Comparing the abandonment rates in the two models requires trading off the

counteracting forces: shorter queue lengths but a significantly higher probability of abandoning

during each period in our model. The net effect leads to a higher, albeit comparable, abandonment

rate in our model. This will be elaborated on further below.

Figure 11: Abandonment probability of the high priority callers in the endogenous model under
the current policy and the reversed strict priority policy.

Third, when there is heterogeneity in callers’ waiting cost, both the first and the second ob-

servations made immediately above are present. In this case, it is the heterogeneity in the cost

estimate and its composition that will determine which effect will dominate for such callers.

The comparison of the results for the “no-priority” group under the endogenous versus the

exogenous abandonment time distribution reveals a surprising result and exemplifies the usefulness

of the random coefficients model. Although the mean waiting cost of the “no-priority” group is

positive, the callers in that group do not behave like the callers in the “high-priority” group, who

have positive waiting costs too. Note, however, that the waiting cost for the “no-priority” group

exhibits significant heterogeneity (whereas that for the “high-priority” group does not). Indeed,

10Under the reversed strict priority policy for the average waiting time of the “high-priority” callers, the dif-
ference between the results of the exogenous and the endogenous models is significant with 90% confidence (t-
statistic=29.87). For the abandonment rate of the “high-priority” callers, the difference is significant with 90%
confidence (t-statistic=2.99).
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the “no-priority” group can be seen as a mix of callers from “low-priority” and “high-priority”

groups qualitatively as far as their delay cost is considered. Hence, we expect to see a decrease in

the abandonment probability for those callers who have negligible delay costs under service degra-

dation. On the contrary, we expect to see an increase in the abandonment probability if the caller

has a high delay cost.

A simple plot of the probability density function of the waiting cost for the “no-priority” group

reveals that the great majority of “no-priority” callers have negligible waiting costs. Hence, we

expect their behavior to be similar to those callers in the “low-priority” group (see the first obser-

vation made above). Indeed, comparing the average waiting time of the “no-priority” callers for

the two models (with the endogenous versus exogenous abandonment distribution) under the static

priority rule verifies this intuition (160.61 sec versus 183.69 sec).11

In addition, comparing the two models under the threshold policy, we expect the abandonment

probability to be higher for the model with the endogenous abandonment distribution because the

threshold policy improves the service for the “no-priority” group (relative to the current policy).

The threshold policy will ensure that the queue lengths for the “no-priority” group in both models

will be close to the threshold, and hence, close to each other. Combining these two suggests the

overall abandonment rate will be determined by the (per period) probability of abandoning, which

is higher in the model with the endogenous abandonment distribution. Comparing the results for

the two models under the threshold policies verifies this intuition; see Table 10 (20.70% versus

24.97% for th=15 and 8.28% versus 11.10% for th=5).12

Fourth, the effect of forward looking callers is more prominent in waiting time estimates than

abandonment rate estimates. Consider the two forces which contribute to the overall abandonment

rate: queue length and the probability of abandoning in a period. For the “low-priority” group, our

endogenous model suggests longer queues and lower probability of abandoning whereas the model

with exogenous abandonment distribution has shorter queues and higher probability of abandoning.

However, the simulation results show that the abandonment rates (which can be approximated by

the product of the two) are comparable. This suggests that the waiting time estimates are likely

to be off significantly if one ignores the endogenous caller behavior, but the difference in the aban-

donment rate estimates will be smaller. Nonetheless, when the threshold is 15, the abandonment

rate of the “low-priority” group is higher under the exogenous abandonment distribution because

the effect of the higher abandonment probability dominates.

In many contexts such as making outsourcing decisions, designing service level agreements and

service contracting, the ex-ante performance analysis of the call center by simulation is essential.

Our model highlights the importance of modeling callers’ behavior endogenously. Namely, we ob-

serve that using a model with exogenously given abandonment distributions may lead to waiting

11Under the static priority policy for the average waiting time of the “no-priority” callers, the difference between
the results of the exogenous and the endogenous models is significant with 90% confidence (t-statistic=3.99).

12Under the threshold policy with 15 and 5 as the threshold for the abandonment rate of the “no-priority” callers,
the difference between the results of the exogenous and the endogenous models is significant with 90% confidence
(t-statistics=16.86 (th=15) and t-statistics=14.56 (th=5)).
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time estimates which can be off significantly. This would be problematic in a setting like call center

outsourcing where service level measures on waiting time distributions are used. The estimates

of the abandonment rate are less problematic due to the counteracting forces of queue length and

the probability of abandoning as explained above. Our modeling approach offers another potential

advantage, which is its ability to estimate what happens when extrapolation is needed. Consider

a promotional campaign that increases the number of high priority calls significantly. Simulating

the system performance in this case may require understanding callers’ abandonment patterns in

a regime where waiting times are longer than those observed in the data. This is challenging to do

non-parametrically whereas our approach can be helpful in studying such situations.

7 Concluding Remarks

This paper studies the patience of callers in call center queues. Callers’ valuation for the service

obtained and their cost for waiting on hold are empirically estimated from call center data, making

use of a structural estimation approach. The valuation for the service, the waiting cost, as well as a

random shock that represents external events during the wait in queue, determine a caller’s utility

over time. Each caller makes wait or abandon decisions based on maximizing this utility. Using

actual abandonment decisions in the data, the approach estimates callers’ parameters regarding

service valuation and waiting costs. The estimation results demonstrate how observed abandon-

ment behavior can be explained with rational agents having linear utility functions, heterogeneous

taste parameters, and experiencing idiosyncratic random shocks as they wait.

Understanding customer patience behavior is essential in call center management. The individ-

ual level decision modeling approach we take herein allows us to draw a natural bridge between

observed behavior (in real data) and subsequent modeling of strategic customers in queues. The

estimation can be used within models that explore the management of informational or delay an-

nouncements, dynamic routing or priority type choices, and more generally as part of a call center’s

overall customer relationship efforts.

To illustrate this, the estimation results are used to study the role endogenous abandonment

behavior modeling plays in call center performance analysis. A comparison is made between the

proposed model with endogenous abandonment behavior and one where the abandonment distri-

bution is exogenously determined from the data, as typically done in the literature. In a series of

experiments that contrast the performance under the service discipline in place at the call center,

with several different alternatives, it is shown that the two models can lead to significantly different

results in terms of waiting time performance. These examples highlight the importance of modeling

callers as strategic agents for managerial decisions that are based on caller waiting times (like delay

announcements, or service level agreements in outsourcing).

A growing literature in Operations Management deals with models where customers are mod-

eled to be strategic decision makers, cf. Hassin and Haviv (2003). Empirical analyses for such

models is mostly lacking in the operations management literature. Our paper illustrates how cus-
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tomer preference parameters can be estimated for such models making use of structural estimation.

While we focus on the estimation of a linear utility model in a queuing wait situation, the technique

is not restricted to our specific model or setting.

Our analysis points to several future research directions worth exploring. In our estimation, the

equilibrium service probability, π(t), is estimated directly from the data. While this is a reasonable

approach for our estimation, in a call center with delay announcements the equilibrium service

probabilities that take into account caller reactions need to be recomputed for counterfactual stud-

ies. Also, our model assumes that callers make decisions at discrete time periods. We analyzed

the effect of the length of these periods in our estimation, however the question of what decision

period length is the most appropriate for a given setting remains to be answered. This is a topic for

experimental investigation which is beyond the scope of our analysis. In our model, we assume that

callers’ waiting cost has a linear form, and that the reward and cost parameters are independent.

We also assume that the idiosyncratic shocks have type-I extreme value distribution. It would be

worth examining these assumptions in future research.
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A Proofs

Proof of Proposition 1. We first derive the formula for choice probabilities Pit(dit; ri, ci), and

then the recursive formula for the integrated value function V (t, ri, ci).

Recall that caller i takes action dit if the utility of choosing dit is higher than the utility of

taking the reverse action, 1− dit, that is

u(t, ri, ci, εit(dit), dit) = v(t, ri, ci, dit) + εit (dit)

> v(t, ri, ci, 1− dit) + εit (1− dit)

= u(t, ri, ci, εit(1− dit), 1− dit).

Therefore, we have

Pit(dit; ri, ci) =

∫ ∫
I{εit(dit)−εit(1−dit)>v(t,ri,ci,1−dit)−v(t,ri,ci,dit)}

× g(εit(0))g(εit(1))dεit(0)dεit(1). (18)

We assume that the idiosyncratic shocks have i.i.d type-I extreme value distribution with scale

parameter 1 and location parameter β ∈ R with the probability density function exp(−(ε(d) −
β)) exp(− exp(−(ε(d)−β)) for d = 0, 1. As will be seen below, for technical convenience we will set

β = −γ, where γ is Euler’s constant. From (18), by Section 5.2 in Ben-Akiva and Lerman (1985),

and the fact that v(t, ri, ci, 1) = 0, we obtain the formula for the choice probability as follows

Pit(dit; ri, ci) =
exp
(
v(t, ri, ci, dit)

)
exp

(
v(t, ri, ci, 1)

)
+ exp

(
v(t, ri, ci, 0)

)
=

exp
(
v(t, ri, ci, dit)

)
1 + exp

(
v(t, ri, ci, 0)

) . (19)

What remains is to derive the recursive formula for the integrated value function. Recall from

(5) that the integrated value function is given by

V (t, ri, ci) = E
[

max
d∈{0,1}

u(t+ 1, ri, ci, εi(t+1)(d), d)

]
,

where the expectation is taken over the distribution of εi(t+1)(1) and εi(t+1)(0). By Section 5.2

in Ben-Akiva and Lerman (1985), maxd∈{0,1} u(t + 1, ri, ci, εi(t+1)(d), d) has type-I extreme value

distribution with scale parameter 1 and location parameter β + log(ev1 + ev0), where vk = v(t +

1, ri, ci, k), k = 0, 1. Therefore, we have

V (t, ri, ci) = E
[

max
d∈{0,1}

u(t+ 1, ri, ci, εi(t+1)(d), d)

]
= β + log(ev1 + ev0) + γ. (20)
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For technical convenience, we assume that the location parameter for the distribution of the id-

iosyncratic shocks β is equal to −γ. Then, by definitions of v1 and v0 and (20), it follows that

V (t, ri, ci) = log
(

exp
(
v(t+ 1, ri, ci, 1)

)
+ exp

(
v(t+ 1, ri, ci, 0)

))
. (21)

Substituting the values of the nominal utilities into (21), the integrated value function can be

written as follows:

V (t, ri, ci) = log
(

1 + exp(−ci + π (t+ 1) ri + (1− π (t+ 1))V (t+ 1, ri, ci))
)
, (22)

which provides the recursive formula for the integrated value function. To conclude the proof, note

that for period T − 1 the integrated value function is given by

V (T − 1, ri, ci) = log
(

1 + exp(−ci + π(T − 1 + 1)ri + (1− π(T − 1 + 1))V (T, ri, ci))
)
. (23)

Since π(T ) = 1, from (22)-(23), the integrated value functions in period T − 1 and consequently all

earlier periods do not depend on V (T, ri, ci), and for convenience we assume that V (T, ri, ci) = 0

for all i.

B Kaplan-Meier Estimator

Since some callers abandon the queue, and we can not observe the actual waiting times of all callers,

the data is censored. Therefore, we use the Kaplan-Meier estimator to estimate the cumulative

distribution of callers’ waiting times, which is denoted by F (t).

Recall that N denotes the number of callers in the data. Suppose that t1 < t2 < ... < tm are the

ordered waiting times of the callers who receive service, where m is the number of distinct waiting

times. Note that m ≤ N because some callers may receive service at the same time.

Suppose that nj callers have not received service or abandoned the queue just prior to tj , j ∈
{1, ...,m}. In addition, denote by δj the number of callers who receive service at tj . The conditional

probability that a caller receives service after tj given that the caller has not received service before

tj is given by qj = 1− δj/nj . Denote by S(t) the probability that a caller’s waiting time exceeds t.

The Kaplan-Meier estimation of S(t) for t ∈ [tk, tk+1) is given by Ŝ(t) =
∏k
j=1 qj . Denote by F̂ (t)

the Kaplan-Meier estimation for F (t). Then, F̂ (t) = 1− Ŝ(t).

C Gauss-Hermite Integration

To calculate the likelihood function, we need to integrate the products of choice probabilities with

respect to y1i and y2i. We use Gauss-Hermite integration to approximate the two dimensional

integrations.

Let ωk and xk denote the weights and the nodes of the Gauss-Hermite quadrature, respectively.

Then, by Equation 7.2.10 in Judd (1998), the expectation of a function f(y) where y is distributed
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according to N(µ, σ2) is approximated as follows

E(f(y)) = (2πσ2)−
1
2

∫
f(y) exp(

−(y − µ)2

2σ2
)

=
1√
π

l∑
k=1

ωkf(
√

2σxk + µ), (24)

where l is the number of nodes used for the approximation. According to Section 7.2 in Judd (1998),

the approximation given in (24) is exact for all polynomials with degrees less than or equal to 2l−1.

Suppose that f(ri, ci) is an arbitrary function such that ri and ci are given by (1). Then using the

Gauss-Hermite integration in (24) and the repeated one dimensional integration given in Equation

7.5.1 in Judd (1998), we have∫ ∫
f(ri, ci)φ(y1i)φ(y2i)dy1idy2i

=

∫ ∫
f(exp(mr + σry1i), exp(mc + σcy2i))φ(y1i)φ(y2i)dy1idy2i

=
1

π

l∑
k=1

l∑
j=1

ωiωjf(exp(mr + σr
√

2xk), exp(mc + σc
√

2xj)), (25)

where φ(·) is the pdf of the standard normal distribution. By Theorem 5.4.1 in Dahlquist and

Bjorck (2008), the approximation of the integration given in (25) is exact for all f(ri, ci) where

f(ri, ci) =
∑
rmi c

n
i , m, n ≤ 2l − 1 and m,n ∈ N.

Using the approximation given in (25), the likelihood of the entire sample is given as follows:

L =
1

π

N∏
i=1

l∑
k=1

l∑
j=1

ωkωj ×
τi∏
t=0

Pit(dit; exp(mr + σr
√

2xk), exp(mc + σc
√

2xj)).

We consider 5 nodes for the approximation, i.e. l = 5. The nodes and weights of the Gauss-

Hermite quadrature are given in Table 11, cf. Table 7.4 in Judd (1998).

k xk ωk

1 –2.0202 0.0199

2 –0.9586 0.3936

3 0.0000 0.9453

4 0.9586 0.3936

5 2.0202 0.0199

Table 11: The nodes and weights of the Gauss-Hermite quadrature for l = 5.
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D Monte-Carlo Experiments

To test the capability of the proposed estimation method to identify the true parameters of the

callers, we use Monte-Carlo experiments. To do so, we first generate simulated data sets assuming

certain values for the structural parameters. We denote these values by true values. Then, we

estimate the parameters of the simulated data sets and construct the 95% confidence intervals, and

check if the true values are in the corresponding confidence intervals.

To implement the Monte-Carlo experiment, we consider the following true values for the struc-

tural parameters: mr = 1.8, mc = −3, σr = 0.2 and σc = 1. We set the maximum waiting time

of the callers T to 120 periods. In addition, for the waiting time distribution and probability of

receiving service, F (t) and π(t), we use those from the data (suitably truncated), which are esti-

mated using the Kaplan Meier estimator (see Appendix B). We generate 40 simulated data sets

such that each data set contains 100,000 callers.

To simulate the abandonment behavior of the callers, for each caller, we draw y1 and y2 from the

standard normal distribution. Then, we find r and c of the callers making use of the assumed true

values of the structural parameters, and consequently can calculate the integrated value function

and the nominal utilities of the callers. Next, we add i.i.d. type-I extreme value distributed random

shocks to the nominal utilities to find the utilities of waiting and abandoning.

Having the probability of receiving service π(t) and the utilities of waiting and abandoning, we

can decide if the simulated caller receives service, abandons the queue or continues to wait as follows:

1- Draw a random variable x from the uniform distribution between 0 and 1. If x ≤ π(t), the

caller receives service and we end the procedure.

2- If x > π(t), compare the utilities of waiting and abandoning. If utility of abandoning is

larger, the caller abandons the queue and we end the procedure, if not, the caller continues to wait

and we repeat steps 1 and 2 for the next period.

Table 12 shows the mean, standard deviation, upper and lower bounds of the 95% confidence

intervals for the estimated parameters of the simulated data sets. These results as well as a series of

extensive Monte-Carlo experiments (available from the authors) show that our estimation method

can recover the true parameter values from the data.

Structural parameter mr σr mc σc

True value 1.80 0.20 –3.00 1.00

Mean (Simulated data) 1.79 0.18 –3.17 1.11

Standard deviation (Simulated data) 0.02 0.04 0.09 0.06

Upper bound of the 95% confidence interval 1.82 0.26 –2.98 1.24

Lower bound of the 95% confidence interval 1.76 0.10 –3.35 0.98

Table 12: Results of the Monte-Carlo experiment.
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