Actual versus Modeled Loss

A Review of the 2004 – 2005 Hurricane Seasons

John DeMartini
David Langdon

Wednesday, May 03, 2006
Agenda

- Perception of model performance
- How are real-time loss estimates used?
- How are real-time loss estimates created?
- Review of actual versus modeled loss
- Katrina – a challenging event
- Next steps
“No worries?”

- Exposure data
- Damage functions
- Policy interpretation risk
- Other exposures (marine, offshore energy)
- Demand surge
“No worries?”

- Use of average damage factor
 - Law of large numbers
- Geocoding accuracy
- Granularity of environmental data
- Wind speed interpolation
- Sub-perils (# tornados spawned, fire following)
Reactions to 2004/2005 season

- Models perceived as doing poorly
- Pre-landfall versus post-landfall estimates
- Measures of model performance
 - Comparison of actual to modeled portfolio loss
 - Actual loss compared to probabilistic results
- Non-modeled loss
- Changes in the models
Real-time Loss Estimates

How can real-time loss estimates be used?

- To assist companies in planning deployment of claims adjusters
- To help companies advise their Board of Directors, shareholders, reinsurers and rating agencies of estimated losses
- They can be used to understand the likelihood of impacting an existing reinsurance program and assessing the need for additional reinsurance coverage
- To identify policyholders to receive pre-event communication regarding loss control measures that can be taken before, during, and after an event
How AIR Generates Loss Estimates for ALERT

- AIR’s ALERT estimates are the result of simulations of the actual event as opposed to identifying similar events from the stochastic catalog.

- ALERT postings are developed as follows:
 - Obtain real-time data on the event from sources such as the National Hurricane Center.
 - Using the event data as inputs, probabilistically model up to several hundred scenarios for the storm’s future progress.
 - Scenario events run against industry exposure database to estimate losses.
 - Develop event sets for use in both CATRADER and CLASIC/2.
 - Publish this data to the ALERT website and notify clients.

- Final loss estimate is posted after review of area.

- Losses from CatTrader (market share model) as reasonableness check.
RMS Real-Time Hurricane Modeling Information

Tropical Depression develops in Atlantic → RMS Storm Watch 24-hour monitoring and website updates → RiskOnline™ 3-hourly updates for probabilistic loss estimates

Develops into CAT 1 Hurricane → 24-hour monitoring, RMS CAT Updates published with meteorological and forecast information, updated modeling parameters, and client email notifications

Landfall → RMS CAT Updates published with post-landfall stochastic modeling parameters and storm footprint, damage analysis, and loss estimates. Reconnaissance underway within 24 hours. Ongoing data collection and website updates.
EQECAT

- EQECAT identifies a subset of events from their stochastic library that reflect the range of possible tracks and storm parameters
- Event sets are transmitted on a daily basis beginning when the storm is still about 3 days from landfall
- Post-event footprint typically issued hours after first landfall
- Field investigations focused on collecting information for future model improvement
Models do not predict losses at individual locations

- Models rely on law of large numbers
- Apply average damage factor to all locations with same windspeed
- Actual results will vary from house to house

![Graph showing damage percentage and location ID with data points and lines for model and actual damage, along with comparison of average incurred and modeled average loss.]

Hurricane Charley – Locations with Peak Gust wind speed = 97.1

Average Incurred Loss: 6,737
Modeled Average Loss: 3,178
We reviewed actual versus modeled for several clients

<table>
<thead>
<tr>
<th>Company</th>
<th>Geography</th>
<th>Business Type</th>
<th>Total Hurricane Exposed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company A</td>
<td>Writes in most hurricane exposed states; 30% exposures in Gulf region and Florida</td>
<td>Mostly commercial</td>
<td>~$50B</td>
</tr>
<tr>
<td>Company B</td>
<td>Writes in most hurricane exposed states; 25% exposures in Gulf region and Florida</td>
<td>60% commercial, 40% personal</td>
<td>~$110B</td>
</tr>
<tr>
<td>Company C</td>
<td>Writes in most hurricane exposed states; 40% exposures in Gulf region and Florida</td>
<td>50% commercial, 50% personal</td>
<td>~20B</td>
</tr>
<tr>
<td>Company D</td>
<td>Writes in Gulf region and Florida</td>
<td>70% commercial, 30% personal</td>
<td>~15B</td>
</tr>
</tbody>
</table>
Notes regarding the following exhibits

- 2005 loss estimates from companies are a moving target. Particularly for Katrina, we may not know the final number for some time.

- Loss estimate methodologies
 - AIR and RMS loss estimates include storm surge. They do not include demand surge, flooding, or any other adjustment.
 - EQECAT numbers include demand surge, but not storm surge or flooding.
Model performance for 2004
Model performance for 2005

For Rita, the incurred for Company B was 130 times the RMS modeled loss

EQECAT Results were not available for Company A
Performance varied by line of business

Katrina Losses by Division for Company B

- **Incurred**
- **AIR**
- **RMS**
- **EQECAT**

Losses (in $Millions)

- **Personal**
- **Commercial**
- **Combined**

© 2006 Towers Perrin
Performance varied by line of business

Wilma Losses by Division for Company B

<table>
<thead>
<tr>
<th></th>
<th>Incurred</th>
<th>AIR</th>
<th>RMS</th>
<th>EQECAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal</td>
<td>20</td>
<td>25</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Commercial</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Combined</td>
<td>30</td>
<td>45</td>
<td>35</td>
<td>50</td>
</tr>
</tbody>
</table>
Estimates vary as time of landfall approaches

Katrina Industry Loss Estimates

Lost ($ Billions)

LA Landfall

© 2006 Towers Perrin
Range of loss estimate over time

Katrina Loss Estimates Over Time for Company D

- Loses ($ Millions)
 - 500
 - 400
 - 300
 - 200
 - 100
 - 0

- Dates:
 - 08/28
 - 08/29
 - 08/30
 - 09/01
 - 09/06
 - 09/09
 - Current

- Legend:
 - AIR
 - RMS
 - Incurred

LA Landfall

Map of the affected area.
Range of loss estimate over time

Rita Loss Estimates Over Time for Company D

- Landfall

<table>
<thead>
<tr>
<th>Date</th>
<th>Losses ($ Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/21</td>
<td>10</td>
</tr>
<tr>
<td>09/22</td>
<td>30</td>
</tr>
<tr>
<td>09/23</td>
<td>20</td>
</tr>
<tr>
<td>09/24</td>
<td>10</td>
</tr>
<tr>
<td>09/28</td>
<td>5</td>
</tr>
<tr>
<td>Current</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend:
- AIR
- RMS
- Incurred

© 2006 Towers Perrin
Range of loss estimate over time

Wiima Loss Estimates Over Time for Company B

- Air
- RMS
- Incurred

Landfall

Losses ($ Millions)

- 200
- 150
- 100
- 50
- 0

10/21 10/23 10/24 10/27 Current

© 2006 Towers Perrin
Katrina — a challenging event

Construction quality:

- Tended to run into lower than anticipated, which translated into higher damages
- Underwriters have commented that Katrina’s winds should not have done so much damage to certain risks – but they did
Katrina — a challenging event

- Displacement of insureds for an extended period made timely inspections difficult, adding complexity to ALE and Business Income claims.

Business income claims:

- Determining the period of restoration is usually calculated based on the time it takes to repair covered damages. In Katrina, many businesses are not motivated to re-open due to the lack of general commerce in New Orleans (there isn’t much business being transacted because many have not returned).

- The period of restoration can be extended due to non-covered circumstances. In Katrina’s case the flooding has made it difficult to separate covered loss from non-covered loss and reach a settlement with the insured.
Katrina — a challenging event

- Accurate projections on exposures were difficult due to the unique characteristics of this hurricane:
 - Flooding (flood vs. covered water damage)
 - Evacuation created contact, reporting and inspection delays
 - Restricted entry to areas delayed damage assessment
 - Early evidence (modeling, satellite imagery) didn’t support the actual extent of wind damage

- No pattern in damages from one risk to another, or territorially
Katrina — a challenging event

- Broussard’s Restaurant — located in the French Quarter where there was no flooding. Incurred over $500,000 in estimated damages ($150,000 in business income)

- “The exterior of a wax museum in the French Quarters was inspected. The museum is located within a block of Broussard’s and it was a no-claim. From the exterior it was difficult to see any difference initially in construction and damages. The roof on Broussard’s did not hold up, the one on the wax museum did.”
Next steps — Modelers

- 2006 model revisions will address several shortcomings discovered during the review of 2004 and 2005 events
 - Light construction damage curve will be increased
 - RMS is adjusting modeling time frame to next 5 years
 - AIR is emphasizing improved data and use of a market share model
 - EQECAT to provide both near term and long term view of hurricane frequency and severity
 - Modeling firms will continue review of demand surge and other non-modeled losses
Next steps — Insurers and re insurers

- Load models for non-modeled loss
- Perform scenario analysis to review risk in concentrated area
- Examine aggregate exceeding probability results
- Consider additional reinsurance limit
- Evaluate impact of model changes
- Study impact of changes in A. M. Best BCAR stress test
- Use interactive mapping tools to track exposure concentrations
- Keep models in perspective