
Intrafirm Trade, Pay-Performance Sensitivity
and Organizational Structure

Tim Baldenius
Beatrice Michaeli

NYU and Columbia University

Preliminary

March 18, 2012



1 Introduction

Managers in divisionalized firms frequently engage in intrafirm trade in addition

to their day-to-day operations. The incentives literature has, for the most part,

looked separately at the problems of eliciting operating effort (the agency prob-

lem) and of guiding intrafirm trade and relationship-specific investments (the

transfer pricing problem). The standard justification is that agency problems

are addressed by calibrating managers’ pay-performance sensitivity (PPS); at

the same time, the relevant costs and revenues for intrafirm trade decisions are

scaled uniformly by these bonus coefficients — they are not directly incurred

by the managers but accrue to divisional P&Ls. The transfer pricing problem

should therefore be unaffected by the managers’ PPS.1 In this paper we argue

that this paradigmatic separation overlooks an important link between these two

incentive problems. By analyzing this link we provide predictions for incentive

contracts and the allocation of decision rights in vertically integrated firms.

A central observation underlying many of our findings is that intrafirm trade

adds compensation risk. Investments in more efficient equipment result in greater

trading volume which, in turn, translates into more trade-related uncertainty and

thereby into compensation risk for managers. To study this link between com-

pensation and investments in detail, we examine the contracting relationship

between a principal and two division managers who exert personally costly ef-

fort and may trade an intermediate good. Division managers are risk-averse and

compensated based on their own divisional profit, i.e., we ignore formal profit

sharing contracts.2 Transfer prices are negotiated.3 Managers can make upfront

1Papers that have aimed at bridging this gap are Holmstrom and Tirole (1991), Anctil and
Dutta (1999), Baldenius (2006), and Baiman and Baldenius (2008).

2Profit sharing arrangements are not frequently observed in practice, see Merchant (1989),
Bushman, et al. (1995), Keating (1997), Abernethy, et al. (2004). Including them into our
framework would not alter the qualitative conclusions.

3We ignore “administered” approaches to intrafirm trade, such as cost- or market-based.

1



specific investments that increase the gains from trade. We first study invest-

ments by one of the two divisions only and later turn to bilateral investments

and the optimal assignment of authority over those.

A recurring theme in the literature is that incomplete contracting often re-

sults in underinvestment. A manager’s P&L records all fixed costs from investing

but only a share of the attendant contribution margin as the result of bargain-

ing. While this hold-up problem is present also in our model, we show that a

risk-averse manager’s investment incentives are indeed affected by his PPS. A

manager who operates under high-powered incentives—e.g., because he faces a

rather stable operating environment—is very sensitive to additional noise intro-

duced into his performance measure by interdivisional trade. As argued above,

investments in fixed assets translate into greater trade-related risk. As a conse-

quence, the higher the manager’s PPS, the less he will invest.

While one might expect the incremental trade-related risk premium to ex-

acerbate the underinvestment problem attributable to hold-up, the opposite is

in fact the case. The investment level preferred by the principal, if she had

enough information to take control of the decision, would take into account the

incremental risk premium incurred by both division managers involved. With

incomplete contracting and delegated investment choice, however, the investing

manager takes only his own risk cost into consideration which, c.p., leads him

to overinvest. Which of the two forces dominates — hold-up or the externalized

risk premium — determines whether ultimately there will be over- or underin-

vestment. A key factor moderating this tradeoff is the divisions’ operating risk,

because of its effect on the managers’ PPS.

We benchmark equilibrium PPS and investments against a scenario of con-

tractible investments. The division managers’ optimal PPS with contractible

investments is determined by two factors: their respective operating uncertainty
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(inversely related to PPS, as usual) and the centrally chosen investment level

(also inversely related because of the additional risk premium). With incomplete

contracting, the investment is chosen by a division manager in his own best in-

terest; the principal’s only control instrument is the compensation contract. If

the divisions face severe operating uncertainty, all else equal, their PPS will be

low. The externalized incremental risk premium associated with the investment

then is small, whereas the hold-up problem remains unaffected. Underinvest-

ment then obtains in equilibrium. As a silver lining, the principal can provide

the manager who has no investment opportunity with higher-powered incentives.

The investing manager, in contrast, may find his incentives muted as a way for

the principal to mitigate the underinvestment problem.

The reverse logic applies to settings of high trade-related uncertainty. The

externalized risk premium problem then weighs heavily, eventually giving rise to

overinvestment. In response, the non-investing manager’s PPS should be low-

ered, relative to the contractible investments benchmark, whereas the investing

manager may face higher-powered incentives so as to curb his overinvestment

tendency.

The preceding arguments illustrate that contractual incompleteness may in-

troduce a wedge into the incentive power for managers facing identical operating

environments except for their scope to engage in specific investments. The PPS

for non-investing managers (more generally, for managers with less essential in-

vestment opportunities) is dictated solely by the anticipated equilibrium invest-

ment level: the adjustment in PPS relative to the contractible investment bench-

mark is inversely related to the equilibrium investment distortion. In contrast,

the PPS for the investing manager should be chosen with an eye to his invest-

ment incentives. Here, the association between equilibrium investment distortion

and PPS adjustment may be positive: to combat under- (over-) investment, the
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principal may want to lower (raise) this manager’s PPS.

We then consider investments in both up- and downstream divisions and

ask how the authority to choose those should be allocated between the division

managers. This question lies at the heart of the classic organization design issue

whether to organize divisions as profit or investment centers. We run a horse

race between two organizational modes:

1. Each division is designated as an investment center, choosing its own in-

vestment and bearing the attendant fixed cost (IC-IC ).

2. One division — the investment center — chooses both up- and downstream

investments and is charged for all attendant fixed costs, whereas the other

division is run as a profit center (PC-IC ).

We conduct the horserace in a setting where each divisional investment is

binary, 0 or 1, and where the pressing investment distortion is underinvestment

(say, due to high operating noise). The downside of concentrating all investment

authority in one hand (PC-IC ), as compared with allocating it evenly (IC-IC ),

is that it exacerbates the hold-up problem. Under IC-IC, the incentive contract

only needs to ensure that investing by each manager is a best response to the

respective other manager also investing. The investment game between the two

managers is characterized by strategic complementarity and therefore may have

multiple equilibria: the desired one, (1,1), and an undesired one, (0,0). But

we show below that whenever multiple equilibria exist, the desired one Pareto-

dominates the undesired one (from the viewpoint of the division managers). The

key here is that each manager’s P&L only gets charged for his own investment.

Under PC-IC, in contrast, the investment center manager gets charged for both

investments (the “double whammy” effect), but still has to split the investment

returns with the other manager. We identify parameter values for which the
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investment center manager prefers to forego both investments, even if the Pareto-

dominant equilibrium under IC-IC is (1,1). If this is the case, the principal

prefers to allocate authority evenly — i.e., the IC-IC mode.

The upside of concentrating all investment authority in one hand, PC-IC, is

that it allows the principal to take advantage of the link between PPS and in-

duced investments highlighted above. Whenever the two divisions differ in their

operating risks, then the underinvestment problem can be alleviated by assign-

ing investment authority to the manager facing the more volatile environment.

All else equal, this manager will have lower-powered incentives and therefore is

willing to invest more. If the differential in operating noise across divisions is

substantial, then this risk effect can outweigh the double whammy effect, mak-

ing PC-IC the preferred mode. The link between investments and compensation

risk, highlighted in this paper, is thus important not just for calibrating incentive

contracts but also for organizational design.

Earlier studies to link transfer pricing with divisional incentives (and orga-

nizational issues) are Holmstrom and Tirole (1991), Anctil and Dutta (1999).

In both papers, risk averse managers invest more in response to profit sharing;

but with pure divisional performance measurement the managers’ PPS would

not affect equilibrium investments. Anctil and Dutta (1999) highlight the risk

sharing benefits associated with negotiated transfer pricing and show that this

may give rise to relative performance evaluation. While risk sharing via bar-

gaining features also in our model, we establish a direct link between PPS and

investments even absent profit sharing.

The paper proceeds as follows. Section 2 describes the model. Section 3

describes benchmark with contractible investments, Section 4 addresses optimal

contracts for non-contractible investments. Section 5 embeds bilateral investment

choice in the larger context of organizational design. Section 6 concludes.
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2 The Model

The model entails a principal contracting with two division managers. Division

1 produces an intermediate good and sells it to Division 2. Division 2 further

processes it and sells a final good. We assume there is no outside market for the

intermediate good. Each division is run by a manager who exerts unobservable

effort ai ∈ R+ with marginal productivity normalized to one.

The sequence of events is as follows. At Date 1, the principal contracts

with the division managers. At Date 2, the managers choose their effort levels

ai. Efforts are “general purpose” in that they are unrelated to the transaction

opportunity that arises between the two divisions. To increase the gains from

intrafirm trade, the manager of the upstream division (Manager 1) can make a

relationship-specific investment I. At Date 3, the managers, but not the prin-

cipal, jointly observe the realization of the random variables θi, i = 1, 2, drawn

from (commonly known) distribution functions over supports [θi, θ̄i], respectively.

Let σ2
θi

denote the variance of θi, and θ = (θ1, θ2).

At Date 4, the managers negotiate over the quantity of the intermediate good

to be traded, q ∈ R+, and the (per-unit) transfer price t ∈ T . Finally, divisional

profits are realized as follows:

π1 = a1 + ε̃1 + tq − C(q, θ1, I)− F (I),

π2 = a2 + ε̃2 +R(q, θ2)− tq,

with

C(q, θ1, I) = (c− I − θ1)q and R(q, θ2) = r(q) + θ2q. (1)

Here, C(q, θ1, I) is Division 1’s (linear) variable cost associated with the trade

and F (I) is its fixed cost from investing, with F (·) increasing and sufficiently

convex to ensure interior solutions; R(q, θ2) is the (net) revenue realized by Di-

vision 2, with r(q) an increasing and concave function. This formulation implies
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Figure 1: Timeline

that Division 1’s marginal production cost is decreasing in the investment, i.e.,

∂2

∂q∂I
C(q, θ1, I) < 0. Let M(q, θ, I) ≡ R(q, θ2) − C(q, θ1, I) denote firmwide con-

tribution margin. The ongoing operations of the division are risky, as expressed

by normally distributed error terms ε̃i with mean zero and variance σ2
εi

. All noise

terms, εi, θi, i = 1, 2, are statistically independent. In the following, we refer to

σ2
εi

as (general) operating uncertainty, associated with each division’s stand-alone

business, and to σ2
θi

as trade-related uncertainty, pertaining to the transaction

between the two divisions.

We assume that the managers are compensated with linear contracts based

solely on their own divisional profits, i.e., we ignore profit-sharing contracts (as

studied in Anctil and Dutta, 1999).4 We denote Manager i’s compensation by

Si = αi + βiπi. The managers are assumed to have mean-variance preferences:

EUi = E(Si)− Vi(ai)−
ρi
2
V ar(Si),

where Vi(ai) denotes disutility of effort and ρi is Manager i’s coefficient of risk

aversion. For convenience, we assume throughout that

Vi(ai) =
vi
2
a2
i , vi > 0.

4Allowing for profit sharing would dampen the effects present in our model but not eliminate
them, as long as more compensation weight is put on own-division profit for each manager.
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To ensure the agents find it worthwhile to participate in the contract, the indi-

vidual rationality condition

EUi ≥ 0 (2)

has to hold throughout.

Before characterizing the optimal contract, we briefly describe two useful

benchmarks. The first-best solution would obtain if the managers’ effort choices

ai and the investment I were contractible, and the realization of θ were observable

to the principal. The managers would be compensated with a fixed salary only,

to avoid any risk premium, and the principal would essentially instruct them as

to the desired effort and investment choices at Date 2. The managers would be

indifferent as to the level of trade and, at Date 4, choose the ex-post efficient

trading quantity, given θ and I:

q∗(θ, I) ∈ arg max
q

M(q, θ, I).

The (necessary and sufficient) first-order condition readsRq(q
∗(·), θ2) = Cq(q

∗(·), θ1, I).

Define M(θ, I) ≡ M(q∗(θ, I), θ, I) as the first-best contribution margin condi-

tional on θ and I. The first-best effort and investment choices at Date 2 are

given by V ′i (a
∗
i ) = 1 and Eθ[MI(θ, I

∗)] = Eθ[q
∗(θ, I∗)] = F ′(I∗), applying the

Envelope Theorem.

As a second benchmark, suppose that the divisions do not transact with each

other (q = 0), but a moral hazard problem exists, because efforts are chosen

privately. Divisional profits then simplify to πi = ai+ ε̃i. As usual, the individual

rationality condition (2) will be binding at the optimal solution (this will be true

throughout this paper). Substituting for the fixed salaries, αi, the agents’ effort

incentive constraints read, for i = 1, 2,

ai(βi) ∈ arg max
ai

βiai − Vi(ai)−
ρi
2
β2
i σ

2
εi
. (3)
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We denote the component of the principal’s payoff (equivalently, of total surplus)

that is unrelated to intrafirm trade by

Φi(βi) ≡ ai(βi)− Vi(ai(βi))−
ρi
2
β2
i σ

2
εi
, (4)

subject to (3). Note that Φ′i(0) > 0 > Φ′i(1) and Φ′′i (βi) ≤ 0 for every βi ∈ [0, 1].

The principal’s optimization problem then reads:

max
β

∑
i

Φi(βi).

Invoking our maintained assumption that Vi(ai) = vi
2
a2
i , the optimal effort of

Manager i simplifies to ai(βi) = βi/vi and the optimal pay-performance sensitiv-

ity (PPS) is given by βMH
i = 1

1+ρiviσ2
εi

. Without intrafirm trade, the model thus

collapses to two completely separable standard moral hazard models.5

3 Contractible Investment

Now consider the full-fledged model with moral hazard, investments, and the

prospect of intrafirm trade. Suppose for now that the investment I is contractible,

e.g., it may entail specialized equipment used exclusively (in a verifiable manner)

to make a particular product. At Date 4, the managers negotiate under sym-

metric information about the quantity to be traded, q, and the transfer price,

t. For any realized θ and I, they agree on the conditionally efficient quantity

q∗(θ, I) and, in the course of bargaining, maximize the firmwide ex-post surplus.

In particular, the outcome of bargaining is unaffected by the managers’ respec-

tive PPS. Assuming equal bargaining strength, the transfer price simply splits

the attendant contribution margin:

t(θ, I) =
R(q∗(θ, I), θ2) + C(q∗(θ, I), θ1, I)

2q∗(θ, I)
,

5In the pure moral hazard case, as usual, mean-variance preferences could be derived en-
dogenously from CARA utility functions, given the standard “LEN” structure. Once we add
interdivisional trade, the performance measures will no longer be normally distributed — hence
our assumption of mean-variance preferences.
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resulting in divisional profits of

π1 = a1 + ε̃1 +
1

2
M(θ, I)− F (I),

π2 = a2 + ε̃2 +
1

2
M(θ, I).

At Date 1 the principal instructs the upstream manager as to the investment

level. In choosing compensation contracts, the principal needs to observe the

individual rationality constraint and the revised effort incentives constraint

ai(βi) ∈ arg max
ai

βiai − Vi(ai)−
ρi
2
β2
i

[
σ2
εi

+
V ar(M(θ, I))

4

]
. (5)

Note that, given the managers’ mean-variance preferences, the additional trade-

related variance does not affect their equilibrium effort choice, holding constant

the PPS. Hence, the effort-related surplus terms, Φi(βi), remain as stated in (4).

The principal thus solves the following optimization program (the superscript

“∗” indicates contractible investments))

Program P∗:

max
β,I∈R+

Π∗(β, I) ≡ Eθ[M(θ, I)]− F (I) +
∑
i

{
Φi(βi)−

ρi
8
β2
i V ar(M(θ, I))

}
,

where V ar(M(θ, I)) is the variance of the firmwide contribution margin from

trading. The corresponding first-order conditions read:

∂Π∗

∂I
= E[q∗(θ, I∗)]− F ′(I∗)−

∑
i

ρi
8

(β∗i )
2∂V ar(M(θ, I∗))

∂I
= 0, (6)

∂Π∗

∂βi
= Φ′i(βi)−

ρiβ
∗
i

4
V ar(M(θ, I∗)) = 0. (7)

As we show in the Appendix, the higher the investment I, the greater the

trade-related risk premium. More fixed assets in place translate into lower

marginal production costs and thereby greater trading volume for any realization

of θ. Higher expected trade volume in turn implies more trade-related risk, i.e.,
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∂
∂I
V ar(M(θ, I)) > 0. This link between investments and risk premia will play a

crucial role in many of the arguments to follow. Applying standard comparative

statics techniques, we find:

Lemma 1 With contractible investment, I∗ is decreasing in each manager’s co-

efficient of risk aversion, ρi. Furthermore, β∗i < βMH
i .

All proofs are found in the Appendix. Trade-related risk translates into lower-

powered incentives. At the same time, risk aversion on the part of the agents

reduces the optimal investment, as compared with a risk-neutral setting. At the

heart of this finding lies the observation that the principal’s objective function

Π∗(β, I) has weakly increasing differences in (β1, β2,−I) because greater invest-

ment increases the marginal risk premium associated with an increase in the

PPS. For future reference, the optimal PPS with contractible investment is

β∗i =
1

1 + ρivi

[
σ2
εi

+ V ar(M(θ,I∗))
4

] . (8)

We now turn to the often more descriptive case of incomplete contracting.

4 Non-Contractible Investment

In many instances divisional investments are neither observable nor contractible.

While aggregate PP&E expenditures are routinely monitored and verifiable, it

is often difficult to trace individual pieces of equipment (or personnel training

expenditures) to particular transactions. We now ask how non-contractibility

of investments affects the optimal incentive contracts and resulting investment

levels. A standard finding in the earlier literature is that incomplete contracting

in conjunction with ex-post negotiations over the realizable contribution margin

leads to underinvestment because of hold-up. As we will show now, this finding

does not always hold when intrafirm trade adds to compensation risk.
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For given investments, the Date 4 bargaining game unfolds as before, resulting

again in the ex-post efficient quantity, q∗(θ, I), and a corresponding transfer

price, t(θ, I). With non-contractible investments (superscript “∗∗”), however,

the principal’s optimization program now entails an additional constraint:

Program P∗∗:

max
β

Π∗∗(β) ≡ Eθ[M(θ, I(β1))]− F (I(β1)) +
∑
i

{
Φi(βi)−

ρi
8
β2
i V ar(M(θ, I))

}
,

subject to

I(β1) ∈ arg max
I∈R+

f(I | β1)− β1F (I). (9)

Here,

f(I | β1) ≡ β1

(
1

2
Eθ[M(θ, I)]− ρ1

8
β1V ar(M(θ, I))

)
is the investing manager’s trade-related certainty equivalent. Denote by β∗∗ the

solution to this program.

The new constraint (9) reflects the fact that the investment is now chosen

noncooperatively by Manager 1 so as to maximize his expected payoff at Date 2.

It is straightforward to see that the seller’s investment incentives are unaffected

by the buying manager’s pay-performance sensitivity, β2. The key question is

how the seller’s own PPS affects his incentives to invest.

Lemma 2 If the investment is non-contractible, the equilibrium investment I(β1)

is decreasing in the investing manager’s PPS, β1.

Stronger effort incentives subject Manager 1 to greater trade-related risk.

As a result, he will invest less the higher his PPS. More formally, his objective

function at Date 2, as expressed by (9), exhibits decreasing differences in (β1, I).

To dissect Manager 1’s investment incentives in more detail, note that equilib-

rium investments under non-contractibility deviate from those under contractibil-

ity for two distinct reasons. First, the profit measure of Division 1 reflects only
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half the benefit of the investment but all fixed PP&E-related costs. This is the

classic hold-up problem. At the same time, the investing manager takes into

account only his own incremental risk premium when investing and ignores that

of the respective other manager. That is, the selling manager externalizes part

of the trade-related risk cost. This works against the hold-up effect. Proposition

1 below identifies sufficient conditions that allow us to evaluate this tradeoff:

Condition IMH (Identical Moral Hazard Problems): vi = v, ρi = ρ and

σεi = σε, for i = 1, 2.

Proposition 1

(i) If σ2
εi

is sufficiently large for i = 1, 2, then I(β∗∗1 ) ≤ I∗ and β∗∗2 ≥ β∗2 .

(ii) If IMH holds, with v sufficiently small, and
∑

i σ
2
θi

is sufficiently large, then

I(β∗∗1 ) ≥ I∗ and β∗∗2 ≤ β∗2 .

Part (i) of the result provides sufficient conditions for underinvestment to

obtain in equilibrium. High operating risk calls for low-powered incentives. For

muted incentives, the externalized incremental risk premium attributable to the

investment becomes negligible, but the hold-up problem remains unabated. As a

result, if the principal were to set β1 = β∗1 , the selling manager would underinvest

relative to the contractible investment benchmark level. To provide additional

investment stimulus, by Lemma 2, the principal would need to lower β1. However,

if the moral hazard problem is sufficiently severe (as measured by high operating

risk σ2
εi

), then the scope for muting incentives is small, because the PPS will be

low to begin with, even without any trade-related risk. As a result, the hold-up

problem then dominates the externalized risk premium.

On the other hand, if the trade-related uncertainty is very high, then the

externalized incremental risk cost weighs heavily. As a result, if the principal
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were to set the investing manager’s PPS equal to β∗1 , the latter would overinvest.

To mitigate this problem, the principal can increase β1, by Lemma 2. However,

if effort is “cheap” (v is small), then the managers’ PPS will be high to begin

with. In that case, the scope for raising β1, as a way to curb the selling manager’s

overinvestment tendency, is limited. As we show in the proof, even if he were

residual claimant at the margin, i.e., β1 = 1, Manager 1 would still overinvest —

the externalized risk premium effect then dominates the hold-up problem.6

The preceding discussion has immediate consequences for the optimal PPS.

Lower (higher) equilibrium investment implies a smaller (larger) expected trading

quantity as compared with contractible investments. The attendant reduction

(increase) in trade-related risk allows the principal to expose the non-investing

manager (Manager 2) to stronger (weaker) incentives.

Note however that Proposition 1 is silent as to the optimal PPS for Manager

1. The reason is that, even though we can unambiguously rank the equilibrium

investments and incentive contracts for Manager 2 between contractible and non-

contractible investments (Proposition 1), the same is not possible for β1. Take

the case of underinvestment — Case (i) of Proposition 1. As argued above,

underinvestment reduces the trade-related risk premium which, at the margin,

calls for higher-powered incentives. At the same time, by Lemma 2 there is a

countervailing force for Manager 1: to alleviate the underinvestment problem, β1

should be lowered. The net effect cannot be evaluated cleanly with continuous

investments (except for special cases where the managers differ systematically

in their risk tolerance). We therefore now turn to the simpler case where the

investment is chosen from a discrete set.

For the remainder of the paper we assume that the investment decision is

binary, i.e., I ∈ {0, 1}. The fixed investment cost is described by F (I) = FI for

6Note that IMH is a sufficient condition in that it simplifies evaluating the tradeoff without
the need to add cumbersome notation.
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some scalar F > 0. That is, the investment is of fixed size and can either be

undertaken in its entirety or foregone completely. We denote by

∆M ≡ Eθ[M(θ, 1)−M(θ, 0)]

the incremental expected contribution margin attributable to the upfront invest-

ment and by

∆V ar ≡ V ar(M(θ, 1))− V ar(M(θ, 0))

the incremental trade-related variance.

We briefly review the benchmark model with contractible investment for I ∈

{0, 1}. The principal’s optimization problem remains as stated in Program P∗

except that now I ∈ {0, 1} and F (I) = FI. We denote by β∗i (I) the solution to

the first-order condition (7) for I ∈ {0, 1} and adopt the vector notation β∗(I) =

(β∗1(I), β∗2(I)). Since investment adds to trade-related risk, it immediately follows

that β∗i (1) < β∗i (0). The principal will contract on I = 1 whenever

Π∗(β∗(1), I = 1 | F ) ≥ Π∗(β∗(0), I = 0). (10)

The investment condition (10) can be restated as: I∗(F ) = 1 if and only if

F ≤ ∆M −
∑
i

{ρi
8

[
(β∗i (1))2 · V ar(M(θ, 1))− (β∗i (0))2 · V ar(M(θ, 0))

]
−∆Φi

}
≡ F ∗, (11)

where ∆Φi ≡ Φi(β
∗
i (1)) − Φi(β

∗
i (0)) < 0 captures the loss in effort-related sur-

plus as a result of the investment being made. For fixed costs low enough, the

contractible investment will be made (I∗ = 1), in which case β∗ = β∗(1). On the

other hand, I∗ = 0 and β∗ = β∗(0) for F > F ∗.

We now return to our maintained assumption in this section that the invest-

ment choice is non-contractible. With binary investment, the principal’s opti-

mization problem is again given by P∗∗ except for I ∈ {0, 1} and F (I) = FI.
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Manager 1’s investment incentive-compatibility constraint (9) then can be re-

stated as:

I∗∗(β1 | F ) = 1 ⇐⇒ F ≤ f(1 | β1)− f(0 | β1)

β1

=
∆M

2
− ρ1

8
β1 ·∆V ar

≡ F ∗∗(β1). (12)

On occasion, it will be convenient to invert (12) as follows:

I∗∗(β1 | F ) = 1 ⇐⇒ β1 ≤ β∗∗1 (F ), (13)

where β∗∗1 (F ) is a decreasing function, by Lemma 2. The higher the fixed cost, the

lower-powered the selling manager’s incentives must be to elicit the investment.

For continuous investments, Proposition 1 has provided sufficient conditions

for underinvestment (overinvestment) as a result of lack of contractibility. Propo-

sition 1′ states the analogous result for binary investments:

Proposition 1′ Suppose the investment choice is binary.

(i) For σ2
εi

sufficiently large, i = 1, 2, F ∗ > F ∗∗(β∗1(1)) – underinvestment.

(ii) If IMH holds, with v sufficiently low, and
∑

i σ
2
θi

is sufficiently large, then

F ∗ < F ∗∗(β∗1(0)) – overinvestment.

In the following, we address separately the two cases described in Proposition

1′ which endogenously give rise to under- and overinvestment, respectively, and

discuss the implications for the managers’ optimal PPS.

4.1 Optimal PPS with High Operating Uncertainty (Un-
derinvestment)

For the case of high operating uncertainty Proposition 1′ has shown that, if

the principal were to set the selling manager’s PPS equal to the optimal level
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conditional on I = 1, the manager would underinvest. Put differently, there exist

fixed cost parameters F for which contractibility is a necessary condition for the

investment to be undertaken.

For fixed cost values at which the investment incentive constraint (13) is

binding, the principal has to reduce Manager 1’s PPS below β∗1(1) in order to

induce the selling manager to undertake the investment. If F drops low enough,

however, incomplete contracting comes at no cost: for any F ≤ F ∗∗(β∗1(1)) the

investment-incentive constraint (13) is satisfied at β1 = β∗1(1). For intermediate

fixed cost values, we have: (i) I∗ = 1 and (ii) a strict efficiency loss due to in-

complete contracting. Specifically, this will be the case for F ∈ (F ∗∗(β∗1(1)), F ∗].

The open question is whether the principal then finds it optimal to induce the

investment, even if doing so requires compromising on general-purpose effort so

as to satisfy the investment incentive condition (13).

More generally, we aim to compare the equilibrium incentive contracts with

those for contractible investments. The optimal contract is the one that maxi-

mizes the value of the following (mutually exclusive) two optimization programs:

P∗∗(1) (Induce investment): for any F ∈ (F ∗∗(β∗1(1)), F ∗]:

max
β

Π(β | I = 1),

subject to β1 ≤ β∗∗1 (F ).

P∗∗(0) (No investment): for any F ∈ (F ∗∗(β∗1(1)), F ∗]:

max
β

Π(β | I = 0),

subject to β1 > β∗∗1 (F ).

Under program P∗∗(1) the principal optimally sets β∗∗2 = β∗2(1) and β∗∗1 =

β∗∗1 (F ) such that the investment constraint (13) is just binding. Note that
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β∗∗1 (F ) < β∗1(1) for any F > F ∗∗(β∗1(1)). Hence, in order to elicit the invest-

ment, the Manager 1 must be given lower-powered incentives as compared with

the contractible investment setting. Under the no-investment program P∗∗(0),

β∗∗i = β∗i (0) holds for each manager i = 1, 2. That is, incentives are higher-

powered for both managers because of the reduced trade-related risk premium.

Our next result provides a complete characterization of the optimal contract

for the case of non-contractible discrete investments in the presence of severe

moral hazard (resulting in underinvestment):

Proposition 2 Suppose the investment choice is binary and non-contractible,

and σ2
εi

is sufficiently high for i = 1, 2, so that F ∗ > F ∗∗(β∗1(1)).

(i) If F ≤ F ∗∗(β∗1(1)), then β∗∗i = β∗i = β∗i (1), i = 1, 2. Manager 1 invests and

non-contractibility does not impose additional costs on the principal.

(ii) There exists a unique F̂ ∈ [F ∗∗(β∗1(1)), F ∗] such that for any F ∈ (F ∗∗(β∗1(1)), F̂ ],

β∗∗1 = β∗∗1 (F ) < β∗1 = β∗1(1) and β∗∗2 = β∗2 = β∗2(1). Manager 1 invests but

the principal’s payoff is lower than with contractible investment.

(iii) If F ∈ (F̂ , F ∗], then β∗∗i = β∗i (0) > β∗i = β∗1(1), i = 1, 2. Manager 1 does

not invest. The principal’s payoff is lower than with contractible invest-

ment.

(iv) If F > F ∗, then β∗∗i = β∗i = β∗i (0), i = 1, 2, and Manager 1 does not invest.

The principal’s payoff is the same as with contractible investment.

Figure 2 compares the optimal PPS with the contractible investment bench-

mark for the special case of IMH (so that β∗1 = β∗2). For extreme values of

fixed costs the investing manager’s PPS coincides with the contractible invest-

ment benchmark, and so does the resulting payoff to the principal. However, the

investing manager’s PPS differs from the benchmark solution for intermediate
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values of F , for which the principal essentially trades off investment and man-

agerial effort distortions. For F above, but close to, F ∗∗(β∗1(1)), the investing

manager’s PPS should be muted, because the investment is sufficiently valuable

to warrant compromises on managerial effort resulting from a reduction in β1.

As fixed costs increase and reach a critical level, denoted F̂ , the principal be-

comes indifferent between inducing the investment—at the expense of reduced

effort incentives for Manager 1—and foregoing it. For F ∈ (F̂ , F ∗] the PPS of

each manager is higher than in the benchmark case. In this region, incomplete

contracting would make it too costly for the principal to induce the investment.

This underinvestment outcome in turn reduces the risk premium.
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Figure 2: Optimal Contracts and Resulting Investments

Proposition 2 demonstrates that, with severe divisional agency problems, non-

contractibility of investments results in (weakly) higher-powered incentives for
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the non-investing manager, whereas the effect on the investing manager’s PPS

is ambiguous: higher-powered incentives for relatively high levels of fixed costs

and muted incentives for low values of F .

4.2 Optimal PPS with High Trade-Related Uncertainty
(Overinvestment)

As shown in Proposition 1′, when the trade-related uncertainty is high (and ef-

fort is “cheap”), the investment may only be undertaken if it is non contractible

(i.e., if F > F ∗), because the investing manager does not internalize the entire

incremental trade-related risk premium. The principal can mitigate this over-

investment problem by adjusting the investing manager’s PPS. The question,

again, is whether it is optimal to do so. As before, this boils down to a discrete

comparison of the respective values of the two discrete optimization problems:

P∗∗(1) (Allow investment): for any F ∈ [F ∗, F ∗∗(β∗1(0))]:

max
β

Π(β | I = 1),

subject to β1 ≤ β∗∗1 (F ).

P∗∗(0) (Prevent investment): for any F ∈ [F ∗, F ∗∗(β∗1(0))]:

max
β

Π(β | I = 0),

subject to β1 > β∗∗1 (F ).

In order to curb Manager 1’s overinvestment tendency (Program P∗∗(0)),

the principal needs to give the investing manager higher-powered incentives:

β∗∗1 = β∗∗1 (F ) + δ, δ → 0.7 Alternatively, the principal can acquiesce to the

overinvestment problem (Program P∗∗(1)) by setting β∗∗i = β∗i (1) for each man-

ager i = 1, 2. As compared with the case of contractible investment, where no

7Note that β∗∗1 (F ) > β∗1(0) for any F < F ∗∗(β∗1(0)).
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investment would be made, this calls for lower-powered incentives for both agents

because of the additional trade-related risk premium.

The following result characterizes the optimal contract for non-contractible

discrete investments in case of high trade-related uncertainty.

Proposition 3 Suppose the investment choice is binary and non-contractible,

IMH holds with v sufficiently low, and
∑

i σ
2
θi

is sufficiently high, so that F ∗ <

F ∗∗(β∗1(0)).

(i) If F ≥ F ∗∗(β∗1(0)), then β∗∗i = β∗i = β∗i (0), i = 1, 2. Manager 1 does

not invest and non-contractibility does not impose additional costs on the

principal.

(ii) There exists a unique F̂ ∈ [F ∗, F ∗∗(β∗1(0))] such that for any F ∈ [F̂ , F ∗∗(β∗1(0))],

β∗∗1 = β∗∗1 (F ) + ε > β∗1 = β∗1(0) and β∗∗2 = β∗2 = β∗2(0). Manager 1 does not

invest but the principal’s payoff is lower than with contractible investment.

(iii) If F ∈ [F ∗, F̂ ), then β∗∗i = β∗i (1) < β∗i = β∗1(0), i = 1, 2. Manager 1 invests.

The principal’s payoff is lower than with contractible investment.

(iv) If F < F ∗, then β∗∗i = β∗i = β∗i (1), i = 1, 2, and Manager 1 invests. The

principal’s payoff is the same as with contractible investment.

Figure 3 is a close analogue to Figure 2, except now the principal trades off

the optimal amount of excess investment against managerial effort distortions.

Again, for extreme values of fixed costs, incomplete contracting does not affect

the contractual outcome, but it does for intermediate values of F . For F larger

than some critical value F̂ , but less than F ∗∗(β∗1(0)), the investing manager’s

PPS is increased so as to curb his overinvestment tendency. For F ∈ [F ∗, F̂ ), it

is optimal for the principal to let the investment go acquiesce to overinvestment.
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In summary, when trade-related uncertainty is high and eliciting manage-

rial effort is cheap, incomplete contracting leads to overinvestment and (weakly)

lower-powered incentives for managers without investment opportunities. An

ambiguous result obtains for the manager who can invest: his PPS will be weakly

greater (lower) than in the contractible benchmark setting if the fixed cost is suf-

ficiently high (low) so that in equilibrium the principal wants to curb (acquiesce

to) the manager’s overinvestment tendency.
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Figure 3: Optimal Contracts and Resulting Investments

A key tenet of prior work on incomplete contracting in divisionalized firms is

that equilibrium investment levels are independent of managers’ incentive con-

tracts, absent profit sharing. According to this conventional wisdom, if two
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divisions operate in comparable operating environments but may have differ-

ent scope to make specific investments, the managers should face similar PPS.

We show that this logic breaks down once trade-related risk is accounted for.

Proposition 2 and 3 demonstrate that the optimal response to ex-ante incentive

problems often is to introduce a wedge between managers’ PPS, i.e., to treat

them differentially. Moreover, these results establish a non-monotonic relation

between the ex-ante profitability of investment opportunities (measures here by

fixed cost) and PPS for managers whose investments can add value to intrafirm

trade (see Figures 2 and 3).

5 Assigning Investment Responsibility

A simplifying assumption in our analysis up to this point was that only one di-

vision had an investment opportunity. We now extend the analysis to bilateral

investments and then employ the model to address an important organizational

design question. Should both divisions be organized as investment centers —

each manager choosing his “own” investment — or should authority for both

up- and downstream investments instead be bundled in the hands of one divi-

sional manager, thereby treating the respective other manager as a profit center

manager to be evaluated based on contribution margin only?

We slightly modify the notation to accommodate bilateral investments. Let

Ii ∈ {0, 1} denote the (discrete) relationship-specific investment undertaken in

Division i = 1, 2, at respective fixed costs of Fi, and I ≡ (I1, I2). For instance,

I2 could describe the demand-enhancing effect of sales promotions downstream.

Normalizing the marginal return of I1 and I2 to unity, each, the divisional relevant

costs and revenues from the transaction generalize those in (1) as follows:

C(q, θ1, I1) = (c− I1 − θ1)q and R(q, θ2, I2) = r(q) + (I2 + θ2)q. (14)

23



The efficient quantity for given investments is q∗(θ, I1, I2) ∈ arg maxq R(q, θ2, I2)−

C(q, θ1, I1). Let M(θ, I) = M(q∗(·), θ, I).

At Date 4, the managers again negotiate over the transaction and split the

attainable contribution margin M(θ, I) equally. In the following, we invoke a

weaker form of our earlier “identical moral hazard problems” condition, now

allowing for operating risks, σεi , to differ across divisions:

Condition IMH′: vi = v and ρi = ρ, for i = 1, 2.

We further modify the manager’s trade-related certainty equivalent to accom-

modate bilateral investments,

f(I | βi) ≡ βi
E[M(θ, I)]

2
− β2

i

ρ

8
V ar(M(θ, I)). (15)

To streamline the exposition, and to highlight the effects of assigning au-

thority across divisions, we make a number of simplifying assumptions. First,

the investments are equally costly, F1 = F2 ≡ F , which, together with (14),

implies that they are equally productive. None of the results to follow hinge

on this restriction. Second, we focus here on the case where both investments

are sufficiently productive such that the principal would choose I∗ = (1, 1) if in-

vestments were contractible. Third, the divisional agency problems are assumed

sufficiently severe so that, as in Section 4.1, the managers tend to underinvest

with incomplete contracting (i.e., the hold-up problem dominates the external-

ized risk premium). We then ask which organizational mode yields the higher

expected surplus for the principal.

With contractible investments, the principal will induce an investment profile

I∗ = (1, 1) if and only if:8

Π∗(1, 1) ≥ max{Π∗(1, 0), Π∗(0, 0)}, (16)

8Given our maintained assumption that investments are of equal productivity, we have
β∗i (1, 0) ≡ β∗i (0, 1), i = 1, 2, f(1, 0 | β) ≡ f(0, 1 | β), for any β, and Π∗(1, 0) = Π∗(0, 1).
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where

Π∗(I) ≡ Eθ[M(θ, I)]− (I1 + I2)F

+
2∑
i=1

[
Φi(β

∗
i (I))−

ρi
8

(β∗i (I))
2 · V ar(M(θ, I))

]
describes the principal’s expected payoff, with

β∗i (I) ∈ arg max
βi

{
Φi(βi)−

ρi
8
β2
i · V ar(M(θ, I))

}
as the optimal PPS conditional on a given (contracted) investment profile.

We now return to the setting with non-contractible investments and consider

two organizational modes. Under the “IC-IC ” mode, each division is organized

as an investment center and each manager’s performance is measured on the

basis of profit net of divisional fixed costs (superscript “I” for IC-IC ):

πIi = ai + ε̃i +
M(θ, I)

2
− FIi, i = 1, 2.

Under the “PC-IC ” mode, one division manager, say, k, is given authority to

choose both I1 and I2. The other manager, l 6= k, is evaluated solely based on

contribution margin. The respective performance measures thus read (super-

script “P” for PC-IC ):

πP k
i = ai + ε̃i +

M(θ, I)

2
− (I1 + I2)F1ki,

where 1ki ∈ {0, 1} is an indicator that takes the value of 1 if and only if i = k.

In the following, for each organizational mode, we describe how the optimal

PPS and equilibrium investments vary in the ex-ante profitability of investments,

measured by F . We then conduct the the performance comparison.

5.1 Both Divisions are Investment Centers (IC-IC mode)

Consider first the IC-IC mode, i.e., each division chooses (and gets charged for in

its P&L) its own investment. The investment choices must form a (pure-strategy)
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Nash equilibrium. In prior incomplete-contracting transfer pricing models, di-

visional investments are strategic complements. Ignoring any transfer-related

risk, if by investing more the seller lowers his variable cost, the expected trading

quantity will increase, which in turn raises the marginal return to the buyer’s in-

vestment in revenue enhancement. On the other hand, the trade-related variance

(and thus the risk premium) in (15) also has increasing differences in I1 and I2.

This effect in isolation would make divisional investments strategic substitutes.

To evaluate this tradeoff, denote σε ≡ maxi σεi , σε ≡ mini σεi and the corre-

sponding PPS under contractible investments, respectively, by β∗(I) ≡ mini β
∗
i (I)

and β̄∗(I) ≡ maxi β
∗
i (I), for any I. (Given IMH′, the division manager facing

greater operating uncertainty will have the lower PPS.)

Lemma 3 For σεi sufficiently high, the function f(I1, I2 | βi), as defined in (15),

has strictly increasing differences in I1 and I2, for βi = β̄∗i (1, 1).

The proof follows immediately from inspection of (15).9 Lemma 3 relies on

the fact that, for high levels of operating uncertainty, the equilibrium PPS will

be small. The strategic complementarity of the expected contribution margin

then is the dominant force. Lemma 3 readily extends to values of β < β̄∗(1, 1).

Note that in any Nash equilibrium involving I = (1, 1), the optimal PPS’s are

bounded from above by β̄∗(1, 1).

We now turn to the simultaneous move investment game between the man-

agers, for any given PPS βi = β̄ and βj = β ≤ β̄. The investment profile

9As βi in (15) becomes small, the strict supermodularity in I1 and I2 that is inherent in the
shared contribution margin dominates the decreasing differences inherent in the risk premium
term. At the same time, in any Nash equilibrium under the IC-IC mode that supports I = (1, 1)
it is never optimal for the principal to set βi > β∗(1, 1) where (given IMH′):

β∗i (1, 1) =
1

1 + ρv
[
σ2
εi + V ar(M(θ,1,1))

4

] .
Since β∗i (1, 1) is decreasing in σεi , Lemma 3 follows.
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I = (1, 1) then constitutes a Nash equilibrium, holding fixed the benchmark

PPS, whenever the fixed investment cost is low enough such that

f(1, 1 | β̄)− β̄F ≥ f(0, 1 | β̄). (17)

At the same time, (0, 0) is a Nash equilibrium if F is high enough such that

f(1, 0 | β)− βF ≤ f(0, 0 | β). (18)

Note that (17) is cast in terms of the manager with the higher PPS, β̄, as he

will internalize a greater share of the incremental trade-related risk premium.

Conversely, (18) is cast in terms of the manager with the lower PPS, β, as it is

this manager who is more eager to break away from I = (0, 0).

Games of strategic complementarity are routinely afflicted by multiple equi-

libria, and this is true also for the IC-IC mode. The following result however

shows that, whenever multiple equilibria exist, the desired one that has both

managers investing Pareto-dominates (for the two division managers) the equi-

librium that entails no investments.

Lemma 4 Consider the IC-IC mode under Condition IMH′ with PPS β and

β̄. For β̄ − β sufficiently small, there exist fixed cost parameters, F , for which

I = (1, 1) and I = (0, 0) each are Nash equilibrium investment profiles, but then

(1, 1) is the Pareto-dominant one. For β̄−β large, if (1, 1) is a Nash equilibrium

(i.e., (17) holds), then it is the unique one.

Lemma 4 allows us to disregard the no-investment equilibrium as long as

I = (1, 1) constitutes an equilibrium. It is straightforward then to generalize

Proposition 2 to the bilateral investment case under the IC-IC mode (in the

presence of severe moral hazard). First, given the supermodularity property of

the investment game (by Lemma 3), Lemma 2 carries over directly to bilateral
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investments: each manager’s investment incentives are decreasing in his PPS,

c.p.. Denote by F I the threshold fixed cost level up to which the benchmark

solution of I = I∗ = (1, 1) can be implemented without having to deviate from

the benchmark PPS (superscript “I ” for IC-IC ):

F I ≡ f(1, 1 | β̄)− f(0, 1 | β̄)

β̄
. (19)

Put differently, (17) becomes binding at F I for the manager with the higher PPS.

By Lemma 2, to induce bilateral investments for F > F I , the principal

needs to reduce the higher PPS just enough to make (17) binding. Denote the

resulting PPS by β̄I(F ). By Lemma 2, β̄I(F ) is a decreasing function. At fixed

cost levels for which β̄I(F ) = β∗(1, 1), the principal needs to start also reducing

the lower PPS for the manager who initially faced a lower PPS in lockstep, i.e.,

βI(F ) ≡ β̄I(F ) ≡ βI(F ). At the critical level F̂ I , the PPS distortions required to

ensure I = (1, 1) is an equilibrium investment profile become too costly and the

principal instead induces I = (0, 0) by raising each manager’s PPS to β∗i (0, 0).
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Figure 4: Optimal PPS and Induced Investments Under IC-IC
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Rather than formally stating a version of Proposition 2 modified for bilateral

investments under the IC-IC mode, we depict the optimal PPS and resulting

investments graphically in Figure 4.

5.2 Concentrating Investment Authority Within One Di-
vision (PC-IC mode)

We now turn to the PC-IC mode in which the managers are treated asymmet-

rically: one manager — the “investment center manager” — is given authority

to choose both up- and downstream investments. Before addressing the issue

of optimal incentives, the principal needs to decide which of the two division

managers to grant this authority. Given that the pressing investment distortion

in this section is, by assumption, underinvestment (due to high operating uncer-

tainty), authority should be assigned to the manager whose division has greater

operating uncertainty. By Lemma 2, this manager is more willing to invest be-

cause, all else equal, he faces a lower PPS and is therefore less sensitive to the

incremental trade-related risk premium as a result of investing.

The investment center manager, facing a PPS of β, will choose investments

according to (superscript “P” for PC-IC ):

IP (β | F ) ∈ arg max
I∈{0,1}2

{
f(I | β)−

∑
i

IiF

}
. (20)

By Lemma 3, only I = (0, 0) or I = (1, 1) are candidates for optimality.10 It is

also immediate to see that condition (17), by which (1, 1) was a Nash equilibrium

under the IC-IC mode, is sufficient for the investment center manager under the

10To see that a “mixed” investment profile, (1,0) or (0,1) (they are economically identical in
this setting), can never be optimal under PC-IC, suppose to the contrary that it is. Then:

f(1, 0 | β)− βF ≥ f(0, 0 | β) ⇐⇒ F ≤ [f(1, 0 | β)− f(0, 0 | β)]/β,

f(1, 0 | β)− βF ≥ f(1, 1 | β)− 2βF ⇐⇒ F ≥ [f(1, 1 | β)− f(1, 0 | β)]/β.

By Lemma 3, however, f(1, 1 | β)− f(1, 0 | β) > f(1, 0 | β)− f(0, 0 | β), a contradiction.
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PC-IC to prefer (1, 1) over (1, 0), as he incurs a lower trade-related risk premium.

More generally, the PC-IC mode benefits from the fact that it is the manager

facing lower-powered incentives who makes all investment decisions. On the

other hand, this manager’s P&L now will be charged for the entire fixed costs of∑
i IiF , as opposed to only his own divisional fixed cost under IC-IC. This effect,

which we label the “double whammy” effect, exacerbates the hold-up problem.

6

β∗i

-

FFP F̂P F ∗

I∗ = (1, 1) I∗ = (0, 0)

Fig. 5a: Contractible Investment

β̄∗(1, 1)

β∗(1, 1)

β̄∗(0, 0)

β∗(0, 0)

6
βi

-

FFP F̂P F ∗

hhhhhhhhh

I∗∗ = (1, 1) I∗∗ = 0

β̄∗(1, 1)

β∗(1, 1)

β̄∗(0, 0)

β∗(0, 0)

Fig. 5b: Non-Contractible Investment

Figure 5: Optimal PPS and Induced Investments Under PC-IC

As in Section 5.1, we describe how investments and PPS vary in F . Since this

is a direct generalization of Proposition 2, we summarize the findings in Figure

5 and omit a formal result. For fixed costs below a threshold F P :

F P ≡
f(1, 1 | β)− f(0, 0 | β)

2β
, (21)

the contractible benchmark solution is achieved without adjustment to PPS,

i.e., the investment center manager chooses I∗ = (1, 1) facing β∗(1, 1). Again,

generalizing Lemma 2 to the PC-IC mode, shows that to induce investment for
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F > F P , the principal needs to reduce the investing manager’s PPS. Denote

the resulting PPS by βP (F ). By Lemma 2, βP (F ) is a decreasing function. As

long as I = (1, 1) is induced, the profit center manager’s PPS remains equal to

β̄∗(1, 1). Once fixed costs reach the critical level F̂ P , the distortion in PPS for

the investing manager necessary to induce I = (1, 1) becomes too costly and

the principal is better off foregoing the investment. In that case, each division

manager’s PPS jumps up to βi = β∗i (0, 0), i = 1, 2.

5.3 Comparing the Organizational Modes

We now turn to a performance comparison of the two alternative ways of allocat-

ing investment authority within the firm, IC-IC versus PC-IC. Evaluating the

principal’s expected payoff under these organizational modes, we find:

Proposition 4 Given Condition IMH’, σεi sufficiently large, i = 1, 2, and (16)

holds (i.e., F ≤ F ∗):

(i) For ∆σε ≡ |σεi − σεj | sufficiently small, the principal prefers IC-IC.

(ii) If ∆σε is sufficiently large and R(·) sufficiently concave in q, then the prin-

cipal prefers PC-IC.

The intuition for this result can best be grasped by directly contrasting the

relevant investment incentive constraints under the two modes, holding constant

the PPS. We refer back to two key earlier observations. As argued above, if

I = (1, 1) is a Nash equilibrium under IC-IC, then: (i) the principal can rest

assured the agents will play this equilibrium (even if is not unique); and (ii) the

investment center manager under PC-IC also will prefer I = (1, 1) to investing in

only one of the two divisions. However, because of the double whammy effect, the

investment center manager under PC-IC may actually prefer I = (0, 0). Now,
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the constraint ensuring (1, 1) is a Nash equilibrium under IC-IC reads

F ≤ f(1, 1 | β̄)− f(1, 0 | β̄)

β̄

≡ F I(β̄), (22)

whereas that ensuring the investment center manager under PC-IC prefers I =

(1, 1) to I = (0, 0):

F ≤
f(1, 1 | β)− f(0, 0 | β)

2β

=
f(1, 1 | β)− f(1, 0 | β)

2β
+
f(1, 0 | β)− f(0, 0 | β)

2β

= F P (β). (23)

By strategic complementarity of investments (Lemma 3), F P (β) < F I(β),

for given β. That is, if the managers face (roughly) similar PPS, because their

divisions operate under similar operating risks, then the IC-IC mode generates

stronger investments incentives in aggregate. The reason is that ensuring high

levels of complementary inputs in form of a Nash equilibrium is “cheap” and the

principal need not worry about the undesired (0, 0) equilibrium. In contrast, the

“double whammy” effect under the PC-IC makes the investment center manager

less willing to invest. As we show in the proof, the logic extends beyond a simple

ranking of F I and F P . Hence, if manager face (roughly) similar operating risks,

IC-IC is the preferred mode.

On the other hand, the benefit of concentrating investment authority in the

hand of one division manager is that the principal can take advantage of the

PPS/investments link highlighted above. If ∆σε is high, then by assigning in-

vestment authority to the manager whose division is more volatile (who hence

has a lower PPS, c.p.), the underinvestment problem can be mitigated. If at the

same time the degree of strategic complementarity is limited, then the risk effect
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will weigh more heavily. An important determinant of the strategic complemen-

tarity between investments is the curvature of the firm’s revenue function, R(·).

The more concave revenues are in q, the smaller is

(f(1, 1 | β)− f(1, 0 | β))−
(
f(1, 0 | β)− f(0, 0 | β)

)
,

for any β. Therefore, if the divisions face sufficiently different volatility and,

at the same time, the revenue function for the final product is highly concave,

then the risk effect outweighs the double whammy effect and makes PC-IC the

preferred mode for the principal (part (ii) of Proposition 4).

In sum, the horse race between an “equitable” organizational mode and one

that concentrates all investment decision authority in the hands of one division

is jointly decided by two forces: the relative volatility in the divisions’ operating

environments and the demand (or market) structure in the final product market.

6 Concluding Remarks

This paper has studied how the PPS for divisional managers affects their incen-

tives to invest and engage in intrafirm trade. We find that introducing a wedge

between division managers’ PPS can increase shareholder value. The reason is

that investments in fixed assets add compensation risk by increasing the expected

level of trade. Therefore, muting (increasing) the incentives of the manager who

has an investment opportunity, relative to that of other managers in otherwise

comparable business units, will raise (decrease) his willingness to invest. Hence,

the need to elicit relationship-specific investments to foster intrafirm trade may

introduce a wedge in the PPS of managers of otherwise similar divisions.

The PPS/investment link also has implications for organizational design.

Some business units in practice are designated as profit centers, without invest-

ment authority, others as investment centers with PP&E charges netted against
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contribution margin. We show that treating divisions asymmetrically — i.e., by

designating one as an investment center in charge of choosing investments for

both divisions engaged in a transaction and the other as a profit center — may

be beneficial, in particular in cases where the divisions face significantly different

operating risks. In that case, the manager facing greater operating risk should

be given investment authority as for him the incremental trade-related risk pre-

mium will be relatively small (because of low-powered incentives). On the other

hand, if the divisions face rather similar operating risks, then it is preferable

to allocate investment authority evenly between the managers, i.e., designating

each division as its own investment center, because that way the overall hold-up

problem is reduced.
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Appendix

Proof of Lemma 1: Follows from (6) and (7), together with the fact that

V ar(M(θ, I)) is increasing in I. To see that V ar(M(θ, I)) is increasing in I start

by noting that V ar(M(θ, I)) = Eθ[M(θ, I)2] − (Eθ[M(θ, I)])2, by definnition.

Therefore,

∂V ar(M(θ, I))

∂I
= Eθ [2M(θ, I) ·MI(θ, I)]− 2Eθ[M(θ, I)] · Eθ [MI(θ, I)]

= 2Cov (M(θ, I),MI(θ, I)) (24)

Applying the Envelope Theorem we note thatMI(θ, I) = Mθ1(θ, I) = Mθ2(θ, I) =

Eθ[q
∗(θ, I)] > 0 and further observe that all second and third partial and cross-

partial derivatives ofM(θ, I) are non-negative and conclude thatM(θ, I), MI(θ, I)

and MII(θ, I) are monotonic increasing functions. It follows that for any θo < θoo,

M(θo, I) < M(θoo, I) and MI(θ
o, I) < MI(θ

oo, I). This in turn demonstrates that

Cov(M(θ, I),MI(θ, I)) > 0 and therefore, ∂V ar(M(θ,I))
∂I

> 0. This completes the

proof of Lemma 1.

Proof of Lemma 2: Denoting the (non-effort related part of the) selling

agent’s objective in (9) by π̂1, the necessary first-order condition associated with

(9) reads:

∂π̂1

∂I
= β1

(
Eθ[q

∗(θ, I)]

2
− F ′(I)− ρ1

8
β1
∂V ar(M(θ, I))

∂I

)
= 0. (25)

The second derivative of π̂1 with respect to I at the optimal investment choice

I(β1) and the optimal quantity q∗(θ, I(β1)) is given by:

∂2π̂1

∂I2
= β1

(
1

2

∂Eθ[q
∗(θ, I(β1))]

∂I
− F ′′(I(β1))− ρ1

8
β1
∂2V ar(M(θ, I(β1)))

∂I2

)
. (26)

Since F (·) is assumed sufficiently convex, to show that (26) is negative we need

to verify that the second derivative with respect to I of the variance of the trade
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surplus at the optimal quantity is positive. This is indeed true for any I because:

∂2V ar(M(θ, I))

∂I2
= 2Eθ [MI(θ, I) ·MI(θ, I)] + 2Eθ [M(θ, I) ·MII(θ, I)]

−2Eθ [MI(θ, I)] · Eθ [MI(θ, I)]− 2Eθ [M(θ, I)] · Eθ [MII(θ, I)]

= 2Cov (M(θ, I),MII(θ, I)) + 2V ar(MI(θ, I)). (27)

To see that ∂2V ar(M(θ,I))
∂I2

> 0 note that V ar(MI(θ, I)) > 0, because MIθ(θ, I) > 0

and that Cov(M(θ, I),MII(θ, I)) ≥ 0, because both M(θ, I) and MII(θ, I) are

monotonic increasing functions as shown in the Proof of Lemma 1. It follows

that ∂2π̂1
∂I2

< 0

By the Implicit Function Theorem, to show that the optimal investment

choice I(β1) is non-increasing in β1, we need to verify that ∂2π̂1
∂I∂β1

≤ 0 at the

optimal investment choice I(β1) and the optimal quantity q∗(θ, I(β1)). That

however follows immediately from (25) because

∂2π̂1

∂I∂β1

=
Eθ[q

∗(θ, I(β1))]

2
− F ′(I(β1))− ρ1

4
β1
∂V ar(M(θ, I(β1)))

∂I
,

together with β1, ρ1, and ∂V ar(M(θ,I(β1)))
∂I

all being positive.

Proof of Proposition 1:

Part (i) If the investment is contractible, the first-order derivative of the

principal’s objective function with respect to investment I∗ is

g∗(I | β∗i ) ≡ Eθ[q
∗(θ, I)]− F ′(I)−

∑
i ρi(β

∗
i )

2

8
· ∂V ar(M(θ, I))

∂I
. (28)

With non-contractible investments, Manager 1’s marginal benefit from increasing

I equals

g∗∗(I | β1) ≡ f ′(I | β1)− β1F
′(I)

= β1

(
Eθ[q

∗(θ, I)]

2
− F ′(I)− ρ1β1

8
· ∂V ar(M(θ, I))

∂I

)
. (29)
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A sufficient condition for I∗ ≥ I∗∗(β1) is that the expression in (28) exceeds

that in (29) for any β1. Since β1 ≤ 1,

g∗(I | β∗i )− g∗∗(I | β1) ≥ Eθ[q
∗(θ, I)]

2
− 1

8
· ∂V ar(M(θ, I))

∂I

(∑
i

ρi(β
∗
i )

2 − β1

)

≥ Eθ[q
∗(θ, I)]

2
− 1

8
· ∂V ar(M(θ, I))

∂I

∑
i

ρi(β
∗
i )

2

≥ 0,

for σ2
εi

sufficiently high, as then β∗i → 0 while q∗(·) remains bounded away from

zero.

It remains to rank the bonus coefficients for Manger 2. Given that I∗ ≥

I∗∗(β1), for any β1, and that ∂V ar(M(θ,I))
∂I

> 0, it is straightforward to see that

β∗∗2 ≥ β∗2 .

Part (ii) A sufficient condition for I∗ ≤ I(β1) is that the expression in (28) is

lower than that in (29) for any β1. Since β1 ≤ 1 and since under IMH assumption,

β∗1 = β∗2 = β∗,

g∗(I | β∗)− g∗∗(I | β1) =

(
1− β1

2

)
Eθ[q

∗(θ, I)]− (1− β1)F ′(I)

−1

8
· ∂V ar(M(θ, I))

∂I

(∑
i

ρi(β
∗
i )

2 − ρ1β
2
1

)

≤ Eθ[q
∗(θ, I)]

2
− ρ

8
· ∂V ar(M(θ, I))

∂I

(
2(β∗)2 − 1

)
.

Next, we use Taylor expansions to express V ar(M(θ, I)) and find

∂V ar(M(θ, I))

∂I
≈ 2q∗(µ, I)

∂q∗(µ, I)

∂I

∑
i

σ2
θi
.

Now note that ∂q∗(µ,I)
∂I

> 0 and Eθ[q
∗(θ, I)] = q∗(µ, I) Hence,

g∗(I | β∗)− g∗∗(I | β1) ≤ Eθ[q
∗(·)]

2

[
1− ρ

2

∂q∗(·)
∂I

∑
i

σ2
θi

(
2(β∗)2 − 1

)]
(30)

≤ 0,
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if v sufficiently low and
∑

i σ
2
θi

sufficiently high. To see this note that as v → 0,

β∗ → 1 and g∗(I | β∗) − g∗∗(I | β1) → Eθ[q∗(θ,I)]
2

[
1− ρ

2
∂q∗(µ,I)

∂I

∑
i σ

2
θi

]
≤ 0 for∑

i σ
2
θi

sufficiently high.

Given that I∗ ≤ I∗∗(β1), for any β1, and that ∂V ar(M(θ,I))
∂I

> 0, it is straight-

forward to see that β∗∗2 ≤ β∗2 .

Alternatively:

A necessary condition for (31) to be negative is that 2(β∗)2 − 1 > 0. This is

satisfied when v < v∗(ρ, σε, σθ), where v∗(.) satisfies:

1

(1 + ρv∗(σ2
ε + (q∗(µ, I)2)

∑
i σ

2
θi

))2
=

1

2

A sufficient condition for (31) to be negative is that 1−ρ
2
∂q∗(µ,I)

∂I

∑
i σ

2
θi

(2(β∗)2 − 1) <

0, which is true for
∑

i σ
2
θi
> s∗(ρ, σε, v), where s∗(.) satisfies:

ρ

2

∂q∗(µ, I)

∂I
s∗
(

2

[
1

(1 + ρv(σ2
ε + (q∗(µ, I)2)s∗))2

]
− 1

)
= 1

Note that ∂v∗(.)

∂
∑
i σ

2
θi

< 0 and ∂s∗(.)
∂v

> 0.

Proof of Proposition 1′:

Part (i) We need to show that D ≡ F ∗ − F ∗∗(β∗1(1)) > 0.
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D =
∆M

2
+
∑
i

∆Φi

−ρ1

8

[(
(β∗1(1))2 − β∗1(1)

)
· V ar(M(θ, 1))−

(
(β∗1(0))2 − β∗1(1)

)
· V ar(M(θ, 0))

]
−ρ2

8

[
(β∗2(1))2 · V ar(M(θ, 1))− (β∗2(0))2 · V ar(M(θ, 0))

]
>

∆M

2
+
∑
i

∆Φi

−ρ1

8

[(
(β∗1(1))2 − β∗1(1)

)
· V ar(M(θ, 1))−

(
(β∗1(1))2 − β∗1(1)

)
· V ar(M(θ, 0))

]
−ρ2

8

[
(β∗2(1))2 · V ar(M(θ, 1))− (β∗2(1))2 · V ar(M(θ, 0))

]
=

∆M

2
+
∑
i

∆Φi

−ρ1

8

(
(β∗1(1))2 − β∗1(1)

)
[V ar(M(θ, 1))− V ar(M(θ, 0))]

−ρ2

8
(β∗2(1))2 [V ar(M(θ, 1))− V ar(M(θ, 0))]

> 0,

for σ2
εi

sufficiently high, as then β∗i (I) → 0, I = 0, 1, and ∆Φi → 0 while ∆M

remains bounded away from zero.

Part (ii) We need to show that D ≡ F ∗ − F ∗∗(β∗1(0)) < 0. Using Taylor ex-

pansions to express V ar(M(θ, I)) and the fact that, given IMH, β∗1(I) = β∗2(I) =
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β∗(I),

D =
∆M

2
+
∑
i

∆Φi

−ρ
8
V ar(M(θ, 1))

[∑
i

β∗i (1))2 − β∗1(0)

]

+
ρ

8
V ar(M(θ, 0))

[∑
i

β∗i (0))2 − β∗1(0)

]
=

∆M

2
+
∑
i

∆Φi

−ρ
8

∑
i

σ2
θi

[
(q∗(µ, 1))2

(
2β∗(1))2 − β∗(0)

)]
+
ρ

8

∑
i

σ2
θi

[
(q∗(µ, 0))2

(
2β∗(0))2 − β∗(0)

)]
< 0,

if v sufficiently low and
∑

i σ
2
θi

sufficiently high.

To see this note that as v → 0, βi(I)→ 1 and hence, D → ∆M
2

+
∑

i ∆Φi −
ρ
8

∑
i σ

2
θi

[(q∗(µ, 1))2 − (q∗(µ, 0))2] < 0 for σ2
θi

sufficiently high. Note also that

∆Φi < 0. This completes the proof of Proposition 1′.

Proof of Proposition 2: Parts (i) and (iv) are obvious, so we only prove

here parts (ii) and (iii). Denote by Ψ∗ the value of program P∗ and by Ψ∗∗(I)

the value of program P∗∗(I), for I ∈ {0, 1} and F (I) = FI. Thus, for any

F ∈ [F ∗∗(β∗1(1)), F ∗]:

Ψ∗(F ) = Π(β∗(1), I = 1 | F )

Ψ∗∗(1)(F ) = Π(β∗∗1 (F ), β∗2(1), I = 1 | F )

Ψ∗∗(0) = Π(β∗(0), I = 0)

Begin by considering fixed cost values F = F ∗∗(β∗1(1)) + ε for ε → 0. Then,

Ψ∗∗(1)(F ) = Ψ∗(F )− δ, δ → 0, because β∗∗1 (F ) is a continuous function of F and
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Π(β∗∗1 (F ), β∗2(1), I = 1 | F ) is continuous in both β1 and F . That is, the value of

program P∗∗(1) converges to that of the benchmark program P∗ (with contractible

investment) as ε becomes small. At the same time, Ψ∗∗(0) is bounded away

from Ψ∗(F ) for F close to F ∗∗(β∗1(1)). This holds because, by Proposition 1′,

F ∗∗(β∗1(1)) is strictly less than F ∗, together with the observations that at F ∗ we

have Ψ∗∗(0) = Ψ∗(F ) (by definition of F ∗, Π(β∗(1), I = 1 | F ) = Π(β∗(0), I = 0))

and that Ψ∗(F ) is monotonically decreasing in F . Thus, we have shown that for

F ↓ F ∗∗(β∗1(1)), Ψ∗∗(1)(F ) > Ψ∗∗(0), whereas for F ↑ F ∗, Ψ∗∗(1)(F ) < Ψ∗∗(0).

Lastly, since Ψ∗∗(1)(F ) is monotonically decreasing in F whereas Ψ∗∗(0) is

independent of F , it follows that there exists a unique indifference value F̂ at

which Ψ∗∗(1)(F̂ ) = Ψ∗∗(0). This completes the proof of parts (ii) and (iii).

Proof of Proposition 3: The proof follows a logic similar to that of

Proposition 2. Again, we only prove parts (ii) and (iii), because parts (i) and

(iv) are obvious. Denote by Υ∗ the value of program P∗ and by Υ∗∗(I) the value

of program P∗∗(I), for I ∈ {0, 1} and F (I) = FI. For any F ∈ [F ∗, F ∗∗(β∗1(0))]:

Υ∗ = Π(β∗(0), I = 0)

Υ∗∗(0)(F ) = Π(β∗∗1 (F ) + ε, β∗2(0), I = 0)

Υ∗∗(1)(F ) = Π(β∗(1), I = 1 | F )

Consider F = F ∗∗(β∗1(0)) − η for η → 0. Then, Υ∗∗(0)(F ) = Υ∗ − δ, δ → 0,

because β∗∗1 (F ) is continuous in F and Υ∗∗(0)(F ) is continuous in β1. Note that

Υ∗∗(1)(F ) is lower than Υ∗ for F close to F ∗∗(β∗1(0)) and hence, F ↑ F ∗∗(β∗1(0)),

Υ∗∗(1)(F ) < Υ∗∗(0)(F ).

Now note that at F ∗ we have Υ∗∗(1)(F ) = Υ∗, because by definition of

F ∗, Π(β∗(1), I = 1 | F ) = Π(β∗(0), I = 0). However, Υ∗∗(0)(F ) is lower than Υ∗.

To see this note that Π(β, I = 0) is concave and is maximized at β(0). Further,

recal that β1(F ) is decreasing in F and that by Proposition 1′, F ∗∗(β∗1(0)) is
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strictly higher than F ∗. Hence, β1(0) = β1(F ∗∗) < β1(F ∗). It is now obvious

that for F ↓ F ∗, Υ∗∗(1)(F ) > Υ∗∗(0)(F ). Lastly, there exists a unique indifference

value F̂ at which Υ∗∗(1)(F̂ ) = Υ∗∗(0).

Proof of Lemma 4: Rewriting (17), the investment profile (1,1) is a Nash

equilibrium investment profile whenever F ≤ F11(β̄), where F11(βi) ≡ f(1,1 |βi)−f(1,0 |βi)
βi

.

By (18), the no-investment profile (0,0) constitutes a Nash equilibrium whenever

F > F00(β), where F00(βi) ≡ f(1,0 |βi)−f(0,0 |βi)
βi

.

Recall that f(I1, I2|β) has increasing differences in (I1, I2), as shown in Lemma

3. Hence, as β̄ and β converge, so will F11(β̄) ≥ F00(β). In this case, for any

F ∈ [F11(β̄), F00(β)), there exist two pure strategy equilibria, (0, 0) and (1, 1).

However, since f(I1,I2 |βi)
βi

is decreasing in βi, (F11(β̄) − F00(β)) is decreasing in

(β̄ − β). For (β̄ − β) sufficiently large, F11(β̄) ≤ F00(β) holds, with the conse-

quence that whenever (1, 1) is a Nash equilibrium, it is the unique one.

We now show that if F11(β̄) > F00(β), then (1,1) Pareto dominates (0,0)

for any F ∈ [F00(β), F11(β̄)]. Pareto dominance of (1,1) over (0,0) requires that

f(1, 1 |βi) − βiF ≥ f(0, 0 |βi) for any βi ∈ {β, β̄}. Rearranging, we get for the

division manager with lower-powered incentives, i.e., βi = β:

f(1, 1 |β)− f(0, 0 |β)

β
− F =

f(1, 1 |β)− f(1, 0 |β)

β
+
f(1, 0 |β)− f(0, 0 |β)

β
− F

= F11(β) + F00(β)− F

> F11(β̄) + F00(β)− F

> 0, ∀ F ∈ [F00(β), F11(β̄)].

For the manager with higher-powered incentives, i.e., βi = β̄:

f(1, 1 |β̄)− f(0, 0 |β̄)

β̄
− F =

f(1, 1 |β̄)− f(1, 0 |β̄)

β̄
+
f(1, 0 |β̄)− f(0, 0 |β̄)

β̄
− F

= F11(β̄) + F00(β̄)− F

> 0, ∀ F ∈ [F00(β), F11(β̄)].
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Each manager is better off under (1,1) than under (0,0), if both investment

profiles are Nash equilibria. This completes the proof.

Proof of Proposition 4:

Part (i): To show that IC-IC dominates PC-IC we need to verify the fol-

lowing conditions:

1. F P ≤ F I .

2. F̂ P ≤ F̂ I .

3. ΠI(β, I) ≥ ΠP (β, I) for any F ∈ (F I , F̂ P ].

Start with Condition 1. In the limit,

lim
∆σε→0

F P = lim
∆σε→0

[f(1, 1 | β)− f(0, 0 | β)]

2β

=
[f(1, 1 | β̄)− f(0, 0, | β̄)]

2β̄

=
[f(1, 1 | β̄)− f(1, 0 | β̄)]

2β̄
+

[f(1, 0 | β̄)− f(0, 0 | β̄)]

2β̄

≤ F I , (31)

using (19), (21) and Lemma 3.

Now continue with Condition 2. Note that F̂ P is defined by:

ΠP ((1, 1), β̄∗(1, 1), βP (F )|F̂ P ) = ΠP ((0, 0), β̄∗(0, 0), β∗(0, 0)) (32)

Denote by

Φ̄(β̄) ≡ a(β̄)− V (a(β̄))− ρ

2
β̄2σ2

εi

the effort-related payoff to the principal from the division facing lower operating

uncertainty, and define Φ̄(β) correspondingly. We can now simplify (32):

F̂ P = E[M(θ, (1, 1)] + Φ̄(β̄∗(1, 1)) + Φ(βP (F ))

−ρ
8

[(β̄∗(1, 1))2 + (βP (F ))2]V ar(M(θ, (1, 1))

−ΠP ((0, 0), β̄∗(0, 0), β∗(0, 0)) (33)
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Note that F̂ I is defined by:

ΠI((1, 1), β̄I(F ), βI(F )|F̂ I) = ΠI((0, 0), β̄∗(0, 0), β∗(0, 0)). (34)

This, again, can be simplified to:

F̂ I = E[M(θ, (1, 1)] + Φ̄(β̄I(F )) + Φ(βI(F ))

−ρ
8

[(β̄I(F ))2 + (βI(F ))2]V ar(M(θ, (1, 1))

−ΠI((0, 0), β̄∗(0, 0), β∗(0, 0)) (35)

Given that:

ΠP ((0, 0), β̄∗(0, 0), β∗(0, 0)) = ΠI((0, 0), β̄∗(0, 0), β∗(0, 0))

= Π∗((0, 0), β̄∗(0, 0), β∗(0, 0)),

to show that F̂ P ≤ F̂ I , we need to verify that

Φ̄(β̄∗(1, 1)) + Φ(βP )− ρ

8
[(β̄∗(1, 1))2 + (βP )2]V ar(M(θ, (1, 1)) ≤

Φ̄(β̄I) + Φ(βI)− ρ

8
[(β̄I)2 + (βI)2]V ar(M(θ, (1, 1)) (36)

Taking into account the optimal effort choices yields Φ̄(β) = β
v
− β2

2v
− ρ

2
β2σ2 and

Φ(β) = β
v
− β2

2v
− ρ

2
β2σ2, ∀β. Substituting and simplifying:

[β̄∗(1, 1)− β̄I(F )]

[
1

v
−
(
ρσ2

2
+

1

2v
+
ρ

8
V ar(M(θ, (1, 1))

)
(β̄∗(1, 1) + β̄I(F ))

]
+ [βP (F )− βI(F )]

[
1

v
−
(
ρσ̄2

2
+

1

2v
+
ρ

8
V ar(M(θ, (1, 1))

)
(βP (F ) + βI(F ))

]
≤ 0 (37)

Now note that:

β̄∗(1, 1) ≥ β̄I(F ) (38)

βI(F ) ≥ βP (F ) (39)
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The first inequality follows from Lemma 2. For the second inequality, from

Lemma 3:

βP (F ) =
[f(1, 1 | β)− f(0, 0 | β)]

2F

=
[f(1, 1 | β)− f(1, 0 | β)]

2F
+

[f(1, 0 | β)− f(0, 0 | β)]

2F

≤
[f(1, 1 | β)− f(1, 0 | β)]

2F
+

[f(1, 1 | β)− f(1, 0 | β)]

2F

= βI(F )

From (38) and (39) it follows that β̄∗(1, 1)− β̄I(F ) > 0 and βP (F )− βI(F ) < 0.

Therefore, a sufficient condition for (37) is that:∣∣∣∣∣∣∣
1
v
−
[
ρσ2

2
+ 1

2v
+ ρ

8
V ar(M(θ, (1, 1))

]
(β̄∗(1, 1) + β̄I) ≤ 0

1
v
−
[
ρσ̄2

2
+ 1

2v
+ ρ

8
V ar(M(θ, (1, 1))

]
(βP + βI) ≥ 0

(40)

Summing the two inequalities in (40) and rearranging:

∆σ = σ̄2 − σ2 ≤ 2

ρv

[
1

βP (F ) + βI(F )
− 1

β̄∗(1, 1) + β̄I(F )

]
(41)

Given (38) and (39) the expression on the RHS is positive. Hence, for sufficiently

small diferential between the divisional operating uncertainties F̂ P ≤ F̂ I .

Now, note that for any F < F P under both regimes, IC-IC and PC-IC,

the investment profile (1, 1) is achieved with the contractible benchmark PPS,

β∗i (1, 1). Hence, the principal’s payoff is equal under both regimes. For any F ∈

[F P , F I ] the principal’s payoff under PC-IC regime is lower than his respective

payoff under IC-IC regime, because under the former regime by Lemma 2 he

needs to reduce the investing manager’s PPS to achieve the investing profile

(1, 1), whereas under the latter regime the same investing profile is still achieved

with the contractible benchmark PPS. For any F ∈ [F̂ P , F̂ I ] it follows by revealed

preference that ΠP (β, I) ≤ ΠI(β, I). For any F > F̂ I under both regimes the
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principal finds it very costly to induce investment profile (1, 1) and switches to

(0, 0) and gives the division managers the contractible benchmark PPS β∗i (0, 0).

Hence, for F > F̂ I the principal’s payoff is equal under both regimes.

We cannot rank unambiguously F I and F̂ P . However, as long as F̂ P ≤ F I ,

the IC-IC mode is preferred and no further proof rather than Condition 1 and

Condition 2 is needed. If F̂ P > F I , then we need to verify Condition 3. For any

F ∈ [F I , F̂ P ]:

ΠP (β, I) = E[M(θ, (1, 1)]− F + Φ̄(β̄∗(1, 1)) + Φ(βP )

−ρ
8

[(β̄∗(1, 1))2 + (βP )2]1))V ar(M(θ, (1, 1)) (42)

ΠI(β, I) = E[M(θ, (1, 1)]− F + Φ̄(β̄I) + Φ(βI)

−ρ
8

[(β̄I)2 + (βI)2]V ar(M(θ, (1, 1)) (43)

To show that ΠP (β, I) ≥ ΠI(β, I) we need to verify that:

Φ̄(β̄∗(1, 1)) + Φ(βP )− ρ

8
[(β̄∗(1, 1))2 + (βP )2]V ar(M(θ, (1, 1)) ≤

Φ̄(β̄I) + Φ(βI)− ρ

8
[(β̄I)2 + (βI)2]V ar(M(θ, (1, 1))

This, however is the same inequality as (36) which, as shown above, holds for

sufficiently small differential between the divisional operating uncertainty. This

completes the proof of Part (i).

Part (ii): Analogically to Part (i) in order to show that PC-IC dominates

IC-IC, we need to verify the following conditions:

1. F P ≥ F I .

2. F̂ P ≥ F̂ I .

3. ΠP (β, I) ≥ ΠI(β, I) for any F ∈ (F I , F̂ I ] .
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Start with Condition 1. To see that F P ≥ F I note that:

F P ≡
f(1, 1 | β)− f(0, 0 | β)

2β

=
[f(1, 1 | β)− f(1, 0 | β)]

2β
+

[f(1, 0 | β)− f(0, 0 | β)]

2β

>
[f(1, 1 | β̄)− f(1, 0 | β̄)]

2β̄
+

[f(1, 0 | β̄)− f(0, 0 | β̄)]

2β̄

≈ F I ,

if r(q) is sufficiently concave, so that ∂2

∂I1∂I2
f(·) becomes small for any β.

Continue with Condition 2. Analogically to to Part (i) we have to verify

that:

Φ̄(β̄∗(1, 1)) + Φ(βP )− ρ

8
[(β̄∗(1, 1))2 + (βP )2]V ar(M(θ, (1, 1)) ≥

Φ̄(β̄I) + Φ(βI)− ρ

8
[(β̄I)2 + (βI)2]V ar(M(θ, (1, 1)) (44)

A sufficient condition for (44) to hold is:

∆σ ≤ 2

ρv

[
1

βP (F ) + βI(F )
− 1

β̄∗(1, 1) + β̄I(F )

]
(45)

≤ 1

ρv

[
1

βP (F )
− 1

]
, (46)

using (38) and (39). Hence, for sufficiently high differential between the general

operating uncertainties Condition 2 holds.

Again, note that for any F < F I the principal’s payoff is equal under both

regimes, because the investment profile (1, 1) is achieved with the contractible

benchmark PPS, β∗i (1, 1). For any F ∈ [F I , F P ] the principal’s payoff under

IC-IC regime is lower than his payoff under PC-IC regime, because under the

former regime by Lemma 2 he needs to reduce the investing manager’s PPS to

achieve the investing profile (1, 1), whereas under the latter regime the same
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investing profile is still achieved with the contractible benchmark PPS. For any

F ∈ [F̂ I , F̂ P ], ΠP (β, I) ≤ ΠI(β, I) by revealed preference. For any F > F̂ I the

principal’s payoff is equal under both regimes, because he finds it very costly to

induce investment and switches to (0, 0) with the contractible benchmark PPS

β∗i (0, 0).

We cannot rank unambiguously F P and F̂ I . However, as long as F̂ I ≤ F P ,

the PC-IC mode is preferred and no further proof rather than Condition 1 and

Condition 2 is needed. If F̂ I > F P , then we need to verify Condition 3. For any

F ∈ [F P , F̂ I ]:

ΠP (β, I) = E[M(θ, (1, 1)]− F + Φ̄(β̄∗(1, 1)) + Φ(βP )

−ρ
8

[(β̄∗(1, 1))2 + (βP )2]1))V ar(M(θ, (1, 1)) (47)

ΠI(β, I) = E[M(θ, (1, 1)]− F + Φ̄(β̄I) + Φ(βI)

−ρ
8

[(β̄I)2 + (βI)2]V ar(M(θ, (1, 1)) (48)

To show that ΠP (β, I) ≥ ΠI(β, I) for any F ∈ (F I , F̂ I ] we need to verify that:

Φ̄(β̄∗(1, 1)) + Φ(βP )− ρ

8
[(β̄∗(1, 1))2 + (βP )2]V ar(M(θ, (1, 1)) ≥

Φ̄(β̄I) + Φ(βI)− ρ

8
[(β̄I)2 + (βI)2]V ar(M(θ, (1, 1))

This, however is the same inequality as (44) which, as shown above, holds for

sufficiently high differential between the divisional operating uncertainty. This

completes the proof.
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