Abstract

We present a model to explain why banks maintain off-setting long-term debts without netting them out. We show that these non-contingent debts implement contingent transfers, since they embed the option to dilute with new debt to a third party. Even though a diluted bank is worse off ex post, a network of gross debts is stable ex ante, since each bank exercises its option to dilute when it is most valuable. However, the network harbors systemic risk: since one bank’s liabilities are other banks’ assets, a liquidity shock can transmit through the network in a default cascade.

*For valuable discussions, thanks to Franklin Allen, Vladimir Asriyan, Ana Babus, Bruno Biais, Tetiana Davydiuk, Doug Diamond, Darrell Duffie, Phil Dybvig, Douglas Gale, Todd Gormley, Denis Gromb, Zhiguoh He, Florian Heider, Laurie Hodrick, Sebastian Infante, Martin Oehmke, Mina Lee, Francesco Palazzo, Uday Rajan, Victoria Vanasco, Thao Vuong, Chaojun Wang, David Webb, Alexander Zentefis, Jeff Zwiebel, and seminar participants at the 2018 AFA, Banca d’Italia, EIEF, the 2017 ECWFC Meeting at the WFA, the 2017 Summer Meeting of the FTG at the LSE, the 2017 FTG Summer School, the FRA, the 2017 Summer Symposium at Gerzensee, the 2018 Maryland Junior Finance Conference, Washington University in St. Louis, and the 2017 Yale Junior Finance conference.

†Washington University in St. Louis and CEPR; jasonrdonaldson@gmail.com.
‡Columbia University and CEPR; g.piacentino@gsb.columbia.edu.
1 Introduction

Gross interbank positions are an order of magnitude larger than net interbank positions. For example, Barclay’s has 48 billion pounds of interbank loans in assets and 43 billion pounds of interbank debt in liabilities, making its gross interbank position almost ten times its net position \(\frac{48}{48-43} \approx 9.6 \). Such gross debts are not all overnight loans. Banks choose to maintain gross positions of longer maturities, and often choose not to net them out even when they constitute off-setting debts with the same bank—i.e. a bank is likely to borrow from another bank and simultaneously lend to that bank. Banks maintain these positions even though practitioners and policy makers alike champion the benefits of netting. As ISDA puts it, “Support for netting is well-nigh universal in the financial industry as well as among policy makers” (Mengle (2010), p. 2). Indeed, netting decreases the costs of debt, such as financial distress and regulatory capital requirements. The literature has established that banks can use off-setting demand deposits as emergency credit lines (Allen and Gale (2000)). But why do they maintain off-setting long-term debts? Why not net out?

In this paper, we develop a model to address this question. We show that non-contingent long-term debts implement contingent transfers, since they embed the option to dilute with new debt to a third party. Even though a diluted bank is worse off ex post, a network of gross debts is stable ex ante, since each bank exercises its option to dilute when it is most valuable. However, the network harbors systemic risk: since one bank’s liabilities are other banks’ assets, a liquidity shock can transmit through the network in a default cascade.

Model preview. In the model, there are \(N \) banks, \(B_1, \ldots, B_N \), each of which suffers

1 For comparison, HSBC’s gross interbank position is 23 billion pounds, more than twenty times its net position; Lloyds’ is 27 billion pounds, almost three times its net; RBS’s is 33 billion pounds, more than twice its net. This important sample of global banks reports these numbers publicly because they are UK regulated. See [home.barclays/barclays-investor-relations/results-and-reports/annual-reports.html] for Barclays, [hsbc.com/investor-relations/group-results-and-reporting/annual-report] for HSBC, [lloydsbankinggroup.com/globalassets/documents/investors/2016/2016_lbg_annual_report_v2.pdf] for Lloyds, and [rbs.com/content/dam/rbs/Documents/News/2017/February/annual%20results.pdf] for RBS.

2 For example, Kuo, Skeie, Vickery, and Youle (2014) estimate that term debt makes up about a quarter of interbank debt in the US and Bluhm, Georg, and Krahnen (2016) find that the average interbank loan maturity is longer than a year in Germany.

3 For example, the bankruptcy proceedings of Lehman Brothers reveal that it held at least 500 million USD in off-setting claims with Bank of America and at least 145 million USD in off-setting claims with UBS (see, e.g., Cuillerier and Valdez (2012), Bank of America v. Lehman Brothers Holdings (2010), and Howard (2011)).

4 Financial distress costs include direct costs—deadweight losses in bankruptcy—as well as possible indirect costs—incentive distortions causing debt overhang and risk-shifting, for example. Capital requirements are based on banks’ gross debt positions unless local supervisor authorities approve the use of net debt; not netting thus either decreases available capital or increases compliance and supervisory costs (ISDA (2016)).
from a maturity mismatch—it has long-term assets in place, but may need short-term liquidity due to a “liquidity shock” before its assets mature. To meet this liquidity need, a bank can borrow in a competitive capital market. However, its ability to do this is impeded by two contracting frictions. First, liquidity shocks are non-contractable and, second, asset pledgeability is limited.

These frictions make it hard for a bank to avoid having to liquidate its assets to meet a liquidity shock—since liquidity shocks are non-contractable, a bank cannot pay a small upfront premium in exchange for a large payoff in the event of a shock; since asset pledgeability is limited, a bank cannot mortgage its assets to meet its liquidity need in the event of a shock. In contrast, without these two frictions, banks would insure completely and there would be no liquidity risk at all; in this sense, they are the smallest set of frictions for which liquidity risk matters. Moreover, they seem to have been important in real-world liquidity crises. For example, the failures of LTCM, Bear Stearns, and Lehman Brothers all involved liquidity shocks, suggesting liquidity shocks are hard to insure against via direct contracting. And, even though LTCM and Lehman had valuable long-term assets, they could not raise enough liquidity against them to meet their shocks, suggesting that limited pledgeability restricted their debt capacity.⁵

Figure 1: Balance sheet before and after liquidity shock

<table>
<thead>
<tr>
<th>Gross Positions</th>
<th>Cash from Sale and New Debt</th>
</tr>
</thead>
<tbody>
<tr>
<td>assets</td>
<td>assets</td>
</tr>
<tr>
<td>long-term assets</td>
<td>long-term assets</td>
</tr>
<tr>
<td>risky short-term liabilities</td>
<td>risky short-term liabilities</td>
</tr>
<tr>
<td>debt from B_j</td>
<td>debt from debt sale</td>
</tr>
<tr>
<td>debt to B_j</td>
<td>cash from debt sale</td>
</tr>
<tr>
<td>equity</td>
<td>debt to B_j</td>
</tr>
<tr>
<td></td>
<td>cash from new debt</td>
</tr>
<tr>
<td></td>
<td>debt to third party</td>
</tr>
<tr>
<td></td>
<td>equity</td>
</tr>
</tbody>
</table>

⁵See footnote 8 below for references.
Results preview. Our first main result is that a bank can circumvent these frictions via off-setting long-term debts.

To see why, suppose that you take on these off-setting debts with bank B_j, i.e. you have a debt from B_j on the assets side of your balance sheet and an off-setting debt to B_j on the liabilities side of your balance sheet. Now, if you are hit by a liquidity shock, you have two ways to raise liquidity in the market. (i) You can sell the debt on the assets side of your balance sheet and (ii) you can take on new, senior debt on the liabilities side of your balance sheet (see Figure 1). Taking on this senior debt dilutes your debt to B_j: the cost of your default is transferred to B_j and, hence, the new debt is subsidized. As a result, you can borrow more in the market, which allows you to meet your liquidity shock.

This mechanism has a practical implementation. You and B_j exchange bonds (or term loans). If you are shocked, you sell B_j’s bond and borrow via a repo in the market. Since repos are short-term and senior (they are exempt from bankruptcy stays), your repo debt dilutes your debt to B_j, allowing you to meet your shock. Hence, our result may explain why real-world banks lobby to preserve bankruptcy exemptions for repos, which ensure a bank can take on new short-term senior debt, diluting its existing creditors.

Our second main result is that the network of off-setting debts is pairwise stable, i.e. you and B_j both want to enter into off-setting debts ex ante—your zero-net debts do not have zero net present value. Why does B_j want to enter into this position with you, even though it knows you will dilute its debt when you are hit by a liquidity shock? Because the off-setting debts allow B_j to raise liquidity by diluting your debt when it is shocked, just as they allow you to raise liquidity by diluting its debt when you are shocked. In other words, you and B_j implement contingent transfers via non-contingent debts: since each of you exercises your option to dilute when you need liquidity most (and only when you need liquidity most), you get a transfer when you are shocked and make a transfer when you are not shocked.

Dilutable debt allows banks to commit to make transfers after shocks are realized. This is valuable, since not-shocked banks would prefer to withhold liquidity, unlike in other models of liquidity risk (e.g., Allen and Gale (2000), Holmström and Tirole (1998)). As a result, some conventional insurance arrangements do not help in our environment. For example, off-setting short-term debts or credit lines do not allow you to commit to provide liquidity ex post, since you would decide not to roll over your debt or to exercise your own credit line. Thus they do not allow you to insure ex ante.

This mechanism explains not only why a bank may borrow from one bank and simultaneously lend to that bank—i.e. the absence of bilateral netting—but also why a bank may borrow from one bank and simultaneously lend to another bank—i.e. the
absence of multilateral netting, or so-called “novation.” In particular, networks like the ring network (Subsection 5.1), in which banks intermediate between other banks, also implement liquidity insurance. There, banks accept the risk of being diluted by their borrowers in exchange for the option to dilute their creditors. Indeed, since banks rely on new debt to a third party to circumvent the limited-pledgeability friction, interbank debt is *optimally non-exclusive* in our model. Thus, our model suggests a rationale for why there is a lot of borrowing and lending within groups of banks generally and, as such, may cast light on the core-periphery structure of interbank debt networks.

Our third main result is that, although the network of off-setting debts provides banks with liquidity insurance, it harbors systemic risk. Since your liability is B_j’s asset, B_j may be unable to repay its creditors if you default. Specifically, if enough banks are hit by liquidity shocks, then all banks default, including those that are not shocked. In other words, whereas interconnectedness helps the financial system to sustain shocks in normal times, it can propagate shocks in the event of a liquidity crisis. This is in line with results in the networks literature (see below).

Policy. Some policy makers have suggested that “close-out netting,” i.e. netting in the event of default, may be enough to mitigate systemic risk (see, e.g., Mengele (2010)). The idea is that if you default on B_j, B_j can just net out its off-setting debt, so your default does not transmit to B_j’s creditors. Our analysis suggests that such close-out netting may not be enough. This is because debts can be traded in the market before your default and, as a result, even if B_j has an off-setting position with you today, it may not tomorrow—B_j may owe money to a third party who bought its debt from you. Thus, B_j may not have a debt to net out against you and your default may transmit to its creditors.

Empirical content. Our analysis is motivated by the empirical observation that banks often do not net out off-setting debts, but it may cast light on a number of other stylized facts as well. (i) In our model, banks with off-setting debts accept the costs of dilution without asking for increased repayments, since they gain reciprocal liquidity insurance. This is consistent with Afonso, Kovner, and Schoar’s (2014) finding that “borrowers get...lower rates from lenders that they also lend to...consistent with a model where...borrowers and lenders...insure each other against liquidity shocks at favorable rates” (p. 3). (ii) In our model, banks use a mix of junior debt (to one another) and senior debt (to a third party), which we interpret as a mix of unsecured debt (e.g. bonds and loans) and secured debt (e.g. repos). This casts light on why

6To be specific, we view the banks $B_1, ..., B_N$ that hold unnetted gross positions as the core of the network and we view the liquidity shocks and long-term assets as the periphery of the network—liquidity shocks represent drawdowns from short-term creditors and long-term assets represent loans to long-term borrowers. Such core-periphery networks are pervasive in interbank markets, as documented in, e.g., Craig and von Peter (2010), in ‘t Veld and van Lelyveld (2014), and Peltonen, Scheicher, and Vuillemey (2013).

7For the legal details of close-out netting, see, e.g., Johnson (2015) and Paech (2014).
banks’ capital structure contains a mix of secured and unsecured debt and why banks may lend unsecured despite the risk of dilution. (iii) In our model, banks enter long-term positions in normal times (before shocks are realized) and take on short-term secured debt in distress (when shocks are realized). This is consistent with patterns of interbank lending volumes in the 2008 financial crisis, which fell for longer maturities, but not for overnight maturity. (iv) In our model, shocked banks raise liquidity by selling securities and taking on new secured debt (via repos). This is consistent with practice. For example, LTMC, Bear Stearns, and Lehman Brothers all responded to liquidity shocks this way before failing. (v) In our model, banks lend to one another in a network of zero-net positions to co-insure liquidity shocks from outside this core network. This may cast light on the core-periphery structure of banking systems, as touched on above (footnote 6).

Our results obtain even if banks do not “understand” the mechanism in our paper. The results rely only on banks being reluctant to get rid of liquid assets (by netting them out against their liabilities). Thus, as long as banks have the heuristic idea that holding on to liquid assets preserves access to funding, they should choose not to net out off-setting positions even if they entered them “by accident.” Moreover, banks automatically net out such accidental positions in other markets, such as futures markets (in which claims are typically collateralized, so do not embed the option to dilute that makes gross positions valuable in our model). This suggests that even if the presence of gross positions is accidental, the absence of netting is not.

Related literature. We make four main contributions to the literature.

First, we uncover a mechanism by which off-setting non-contingent, non-exclusive debts implement state-contingent liquidity insurance, since they embed the option to dilute. This extends the idea that the option to default can implement valuable contractual contingencies when contracts are incomplete (see Allen and Gale (1998) and Zame (1993)). Unlike default, dilution is possible at any time before maturity. Hence, in our model, the option to dilute creates liquidity for banks at the interim date, something the option to default cannot do. However, there is no dilution without (some probability of) default. Thus, our mechanism must be used in conjunction with the option to default, it cannot replace it.

Second, we show that non-exclusive contracts can mitigate the inefficiencies arising from limited pledgeability, i.e. the ability to take on new debt to a third party can loosen borrowing constraints. This is the counterpart of Donaldson, Gromb, and

9E.g. due to lack of coordination among different traders within a bank as in Atkeson, Eisfeldt, and Weil (2013).

10Dilutable debt also arises in Diamond’s (1993) asymmetric-information model, since it makes it costly for bad borrowers to pool with good borrowers; in Hart and Moore’s (1993) agency model, since it loosens
Piacentino’s (2016) finding that limited pledgeability can mitigate inefficiencies arising from non-exclusive contracts. Our result also gives a new, positive perspective on non-exclusivity, which the literature has generally considered as a friction.\footnote{See, e.g., Acharya and Bisin (2014), Admati, DeMarzo, Hellwig, and Pfleiderer (2013), Attar, Casamatta, Chassagnon, and Décamps (2015), Bisin and Gottardi (1999, 2003), Bisin and Rampini (2005), Bizer and De-Marzo (1992), Brunnermeier and Oehmke (2013), Faure-Grimaud and Gromb (2004), Kahn and Mookherjee (1998), Leitner (2012), and Parlour and Rajan (2001).}

Third, we provide an explanation for why banks hold off-setting fixed-term debts. This complements Allen and Gale’s (2000) finding that cross-holdings of demand deposits provide liquidity insurance when there is no market to borrow in and Holmström and Tirole’s (1998) finding that intermediated credit lines provide liquidity insurance when there is no market to lend in (i.e. no savings technology).\footnote{If there is a debt market at the interim date in Allen and Gale’s (2000) environment, then there is no role for cross-holdings of deposits, since banks can just borrow in the market to get liquidity. However, the possibility of borrowing at the interim date can also distort investment decisions at the initial date. Thus, in Allen and Gale’s (2000) setup, a mechanism designer may wish to close debt markets (see their discussion on p. 26 as well as Allen and Gale (2004), Farhi, Golosov, and Tsvinski (2009), and Jacklin (1987)). In our model, we take it as a primitive that debt markets exist and find that a mechanism designer does not want to close them, but rather relies on them.}

Fourth, we find that, despite providing liquidity insurance, the interbank network harbors systemic risk. This extends the “robust-yet-fragile” results from the networks literature to our environment, in which the network is endogenous and interbank debts are optimal.\footnote{Our finding that mutual gross debts help shocked banks to raise liquidity from a third party is related to a 2011 lecture by John Moore. He outlines a macro model based on the assumption that banks with larger gross interbank positions can borrow more from households. Our analysis suggests that Moore’s reduced-from idea that mutual gross positions facilitate new borrowing is right. However, unlike in Moore’s setup, access to new debt does not come for free in our model, since creditors bear the risk of dilution.}

2 Model

In this section, we present the model.

constraints on management that are too tight if debts are strictly prioritized; and in Stulz and Johnson’s (1985) securities pricing model, since it mitigates the debt overhang problem.\footnote{Papers that study systemic risk in interbank networks or credit chains include Acemoglu, Ozdaglar, and Thabaz-Salehi (2015), Allen, Babus, and Carletti (2012), Allen and Gale (2000), Babus (2016), Blumh, Faia, and Krahnen (2013), Brusco and Castiglionesi (2007), Cabrales, Gottardi, and Vega-Redondo (2013), Di Maggio and Thabaz-Salehi (2015), Donaldson and Michele (2016), Elliott, Golub, and Jackson (2014), Gale and Kariv (2007), Farboooudi (2013), Freixas, Parigi, and Rochet (2000), Kiyotaki and Moord (2001), and Zawadowski (2013); however, the equilibrium network is endogenous in only a few of these papers.}
2.1 Dates and Players

There are three dates, $t \in \{0, 1, 2\}$, and N symmetric banks, B_1, \ldots, B_N. Banks are risk-neutral, consume only at Date 2, and discount the future at rate zero. Banks have long-term assets but relatively short-term liabilities. Specifically, each bank has riskless assets y realized at Date 2, but the possibility of a “liquidity shock” at Date 1. If a bank is hit by a liquidity shock, it must generate liquidity $L < y$, otherwise it defaults and its assets are destroyed. M banks are hit with liquidity shocks at Date 1, each with probability $\pi := M/N$. We assume that M is deterministic, so there is no aggregate risk and thus the possibility of perfect insurance.

There is a competitive capital market in which banks can borrow or sell securities at Date 1.

2.2 Contracting Frictions

Two contracting frictions limit banks’ ability to insure against liquidity shocks. First, liquidity shocks are non-contractable. Second, asset pledgeability is limited, i.e. a bank can divert a fraction $1 - \theta$ of its assets y.

These frictions are especially important for banks. Liquidity shocks are a major concern for banks since, almost by definition, they invest in long-term assets funded by short-term liabilities. Bank regulations such as Basel III’s Liquidity Coverage Ratio expressly target these liquidity risks. This regulation reflects bank’s inability to insure against liquidity shocks via direct insurance contracts—if banks could insure directly, they would not have to insure indirectly by holding securities as “liquidity coverage.” Banks’ complexity contributes to limited pledgeability, making it hard to value assets ex ante and costly to liquidate them ex post (Shleifer and Vishny (1992)).

2.3 Payoffs

If a bank is liquidated at Date 1, its assets are destroyed and it gets zero. Otherwise, it decides whether to default or to repay its debt. If it defaults, it gets the diversion value of its long-term assets $(1 - \theta)y$. If it repays, it gets y minus the net repayments from its financial securities, i.e. the repayments it makes to other banks less the repayments it makes to other banks less the repayments

15In the baseline model, we assume for simplicity that liquidity shocks are observable but not verifiable following the incomplete-contracts paradigm. However, in Subsection 5.2 we show that our results also obtain if liquidity shocks are unobservable.

16Limited pledgeability is a catch-all way to generate financial constraints. It has micro-foundations in terms of numerous frictions, including capital diversion, non-contractable effort, and asymmetric information (see DeMarzo and Fishman (2007)).
it gets from other banks and any cash it may hold:

\[
B_i\text{'s payoff} = \begin{cases}
0 & \text{if liquidated at Date 1}, \\
(1 - \theta)y & \text{if default at Date 2}, \\
y - \text{net repayments} & \text{if no default}.
\end{cases}
\] (1)

It may be worth emphasizing that the bank cannot divert financial assets, but only the long-term assets \(y \). In other words, cash and interbank debts are perfectly pledgeable, whereas only the fraction \(\theta \) of long-term assets is pledgeable. This assumption may reflect the fact that (i) a real-world bank may be able to “divert” clients or employees in the event of default, but not to steal financial securities outright, or (ii) financial securities are easily redeployable and thus put creditors in a strong bargaining position in the event of default, which may limit renegotiation as in Hart and Moore (1994, 1998), for example.\(^{17}\)

2.4 Timeline

The sequence of moves is as follows.

| Date 0 | Banks contract bilaterally. |
| Date 1 | \(M \) random banks suffer liquidity shocks.
Banks sell securities to or borrow in the market.
Each shocked bank either pays \(L \) or is liquidated. |
| Date 2 | Asset payoffs realize, banks either divert and default or repay their debt. |

2.5 Assumption: Liquidity Risk

We assume that the mortgage value \(\theta y \) of a bank’s assets is between its expected liquidity need \(\pi L = ML/N \) and its realized liquidity need \(L \) given a shock,

\[
\frac{M}{N} L < \theta y < L. \quad (*)
\]

Intuitively, this assumption says that (i) there is enough liquidity to go around at Date 1, since the total mortgage value of banks’ assets \(N\theta y \) exceeds the total need for liquidity \(ML \), but that (ii) no shocked bank has enough liquidity to self-insure, since the mortgage value of its own assets \(\theta y \) is less than its liquidity need \(L \) if it is shocked.

\(^{17}\)To be concrete, in models like Hart and Moore (1994, 1998), a borrower cannot commit not to renegotiate repayments. Thus, redeployment values determine equilibrium repayments, since creditors’ threat point at renegotiation is to seize assets and redeploy them. As a result, financial securities (which are costless to redeploy) are more pledgeable than other long-term assets, such as relationship loans (which are difficult to redeploy).
3 Benchmarks

In this section, we consider four benchmark allocations.

3.1 First Best

The first best is the allocation that maximizes the total surplus. Since $L < y$, liquidation is inefficient. Thus, all liquidity shocks are met in the first best: a bank generates surplus $y - L$ if it is hit by a liquidity shock and y otherwise.

Lemma 1. (First best.) The first-best surplus is $Ny - ML$.

3.2 Second Best

We define the second-best allocation as the allocation that maximizes banks’ payoffs given limited pledgeability and individual rationality, but not the non-contractability of the liquidity shocks. In this case, a bank B_i can buy insurance against its shock by paying a premium when not shocked. Specifically, if B_i is shocked, it needs to pay L but can raise at most $\theta y < L$ in the market; its liquidity shortfall is $L - \theta y$. One way for B_i to insure this shortfall in the event of a shock (which occurs with probability π) is to agree to pay the actuarily fair premium $\frac{\pi}{1-\pi}(L - \theta y)$ when it is not shocked (which occurs with probability $1 - \pi$).

Lemma 2. (Second best.) The second-best surplus equals the first-best surplus $Ny - ML$ from Lemma 1.

3.3 Autarky

We now turn to the extreme case in which banks are in autarky, i.e. there are no transactions whatsoever among $B_1, ..., B_N$, and no borrowing from the market. Due to maturity mismatch, a bank’s assets are destroyed whenever it is hit by a liquidity shock. Thus, a bank gets zero with probability π and y otherwise.

Lemma 3. (Autarky.) If banks are in autarky, the surplus is $(N - M)y$.

3.4 No Interbank Market

We now turn to the case in which there is no interbank market, i.e. banks cannot contract with one another, but only borrow/sell in the market. In this setting, banks cannot contract on the liquidity shock to insure, as in the second best (Subsection 3.2), or enter into any other insurance arrangement. They can borrow in the market, but
they cannot raise enough to meet their shocks, since their liquidity need L exceeds the mortage value of the their assets $θy$.

Lemma 4. *(No interbank market.)* With no interbank market, the surplus equals the autarky surplus $(N - M)y$ from Lemma 3.

4 Mutual Gross Debts

In this section, we consider a network of mutual gross interbank debts. We show it implements the first-best surplus in equilibrium and is stable ex ante. However, it can harbor systemic risk.

Figure 2: Complete network $(N = 3)$ and B_i’s balance sheet

<table>
<thead>
<tr>
<th>assets</th>
<th>liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>long-term risky short-term</td>
<td></td>
</tr>
<tr>
<td>assets y</td>
<td>liabilities L</td>
</tr>
<tr>
<td>debt from B_1</td>
<td>debt to B_1</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>debt from B_{i-1}</td>
<td>debt to B_{i-1}</td>
</tr>
<tr>
<td>debt from B_{i+1}</td>
<td>debt to B_{i+1}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>debt from B_N</td>
<td>debt to B_N</td>
</tr>
</tbody>
</table>

4.1 Mutual Gross Debts Implement First Best

Consider the following network of contracts among the banks B_1, \ldots, B_N. Every pair of banks B_i and B_j enters an off-setting position: B_i and B_j exchange promises to repay F, as depicted in Figure 2. Suppose that these debts are paid proportionally (pari passu) but a bank B_i can take on new senior debt in the market at Date 1. Thus, the
interbank debts can be interpreted as unsecured, e.g. loans or bonds, and the new debt as secured, e.g. repos.

Proposition 1. (Equilibrium with mutual gross debts.) The complete network of gross positions with \(F = (L - \theta y)/(N - M) \) implements the first best.

The following constitutes a subgame perfect equilibrium outcome.

Date 1
\[
\text{Shocked banks sell all the debt they hold and borrow } \theta y \text{ in the market via senior debt. They keep their long-term assets in place.}
\]
\[
\text{Not-shocked banks keep their long-term assets in place.}
\]

Date 2
\[
\text{Shocked banks default and get } (1 - \theta)y.
\]
\[
\text{Not-shocked banks do not default and get } y - MF.
\]

This says that holding off-setting debts allows banks to insure liquidity shocks, so that shocked banks can avoid liquidation at Date 1 and keep their long-term assets in place until Date 2. The reason is that shocked banks can take on new debt, diluting not-shocked banks. This dilution implements a transfer from the not-shocked banks to shocked banks, which is exactly the insurance transfer that banks would commit to if they could contract on liquidity shocks (Lemma 2).

This mechanism works because, given the face value \(F \), not-shocked banks’ assets are valuable enough relative to their liabilities that they have incentive to repay their debt and avoid default. Given they never default, not-shocked banks have no way to benefit from dilution, since there can be no dilution without default. As a result, not-shocked banks’ debt sells at par. Hence, a shocked bank can raise \((N - M)F\) from selling not-shocked banks’ debt—it holds the debt of \(N - 1\) other banks of which \(M - 1\) are shocked. It can also raise \(\theta y\) from taking on new senior debt in the market. Thus, in total a shocked bank can raise
\[
(N - M)F + \theta y = (N - M)\frac{L - \theta y}{N - M} + \theta y = L.
\]

I.e. a shocked bank can raise exactly the liquidity \(L\) it needs to sustain its shock.

4.2 Mutual Gross Debts Are Stable

Now turn to Date 0. Given the network of mutual gross debts, would a pair of banks \(B_i\) and \(B_j\) like to alter their bilateral agreement? For example, would \(B_i\) and \(B_j\) like to change the face value of debt that they owe each other? In other words, is this network of mutual gross debts pairwise stable? Or are covenants or other contractual provisions necessary?
Proposition 2. (Stability of mutual gross debts.) The network in which all banks have debts to and from all other banks with face value $F = (L - \theta y)/(N - M)$ is pairwise stable. I.e. no pair of banks can enter into another pair of bilateral (pari passu or prioritized) debts that makes one strictly better off without making the other strictly worse off.

A pair of banks may try to increase its joint surplus at the expense of the other banks, i.e. alter their bilateral contracts to dilute other banks. With debt contracts, they can do this in two ways: (i) they can prioritize each others’ debt, e.g. securing the assets θy to ensure seniority, or (ii) they can lower each others’ face values, so they make lower repayments to each other relative to other banks. However, both (i) and (ii) are undesirable because they undermine the liquidity insurance role of off-setting debts—they lead a bank to default when it is hit by a liquidity shock. This is because both arrangements reduce the amount that a bank can raise in the market: prioritizing debt reduces the amount that a bank can borrow, since it reduces the value of the assets that a bank can pledge as security; decreasing face values decreases the amount that a bank can raise from debt sales, since it reduces the market value of the other bank’s debt.

In the N-bank environment, we establish network stability within the class of debt contracts. However, our analysis speaks to the optimality of debt as well, as we show formally for $N = 2$.

Corollary 1. (Optimality of debt.) Suppose $N = 2$ and $M = 1$. Off-setting non-prioritized debts with face value $F = L - \theta y$ are globally optimal bilateral contracts between B_1 and B_2.

The fact that these off-setting debts implement the first best outcome between B_1 and B_2 (Proposition 1) implies that the two-bank network in which B_1 and B_2 take off-setting debts is stable to deviation to any contract, not just debt contracts. Further, B_1 and B_2 optimally choose not to prioritize their debts. Each accepts the possibility of being diluted with new debt in exchange for the option to dilute the other with new debt.\footnote{This idea that financial networks form because banks voluntarily expose themselves to dilution complements Farboodi’s (2015) idea that financial networks form because banks voluntarily expose themselves to counterparty risk.} This works because each bank exercises its option to dilute only when it is shocked, given that dilution is only valuable when default is possible. This mechanism relies on non-exclusive contracts—those that allow banks to enter into a new relationship with a third party in the market—to help banks to co-insure, suggesting a positive side to non-exclusive contracting which contrasts with the literature. Further, banks use a mix of junior debt (to each other) and senior debt (to a third party) to
implement efficiency. This casts light on the coexistence of unsecured and secured debt in real-world banks’ capital structure.

4.3 Mutual Gross Debts Harbor Systemic Risk

Now consider a “large” liquidity need given the network of gross debts above. What happens if \(M' > M \) banks need liquidity? Do mutual gross debts still serve as liquidity insurance?

Proposition 3. (Systemic crises.) Suppose that all banks have unsecured debt to and from each other with face value \(F = (L - \theta y)/(N - M) \) and the number of shocked banks is \(M' \), where

\[
M' > \frac{(N - M)\theta y}{L - \theta y}. \tag{3}
\]

There is a “systemic crisis” in which all banks default: the \(M' \) shocked banks fail to meet their liquidity shocks at Date 1 and the \(N - M' \) not-shocked banks default at Date 2 in a subgame perfect equilibrium.

Even though mutual gross debts allocate liquidity efficiently whenever there is enough of it to go around, we now see that gross debts can also exacerbate liquidity shortages when there is not enough of it to go around. Indeed, if the number of shocked banks \(M' \) is large enough, liquidity shocks transmit through the network of gross debts leading all banks to default. The shock passes from one bank to the next in a default cascade: since each bank’s liabilities are another bank’s assets, a bank’s failure to repay its debt harms not only its creditors but also its creditors’ creditors. This finding echoes results in the networks literature that financial linkages can mitigate the effects of some shocks while amplifying the effects of others (see, e.g., Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015) and Allen and Gale (2000)).

5 Extensions

We now consider extensions of the baseline setup.

5.1 Multilateral Netting and the Ring Network

So far we have focused on why banks hold mutual gross debts, i.e. on the absence of bilateral netting. However, our mechanism also casts light on why banks lend and borrow from many other banks, i.e. on the absence of multilateral netting (“novation”). For example, consider the ring network in which \(B_i \) has debt \(F \) to \(B_{i+1} \) for \(i \in \{1, \ldots, N - 1\} \) and \(B_N \) has debt to \(B_1 \), as depicted in Figure 3. This zero-net position among the
Figure 3: Ring network \((N = 3)\) and balance sheet of unnetted debts

<table>
<thead>
<tr>
<th>assets</th>
<th>liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>long-term assets (y)</td>
<td>risky short-term liabilities (L)</td>
</tr>
<tr>
<td>debt from (B_{i-1})</td>
<td>debt to (B_{i+1})</td>
</tr>
<tr>
<td></td>
<td>equity</td>
</tr>
</tbody>
</table>

banks \(B_1, ..., B_N\) can also implement liquidity insurance, albeit under more restrictive conditions.

Lemma 5. (Ring network.) Suppose \(M = 1\) and \(L \leq 2\theta y\). The ring network with \(F = L - \theta y\) implements the first best in a subgame perfect equilibrium.

This result implies that gross exposures within networks provide liquidity insurance via the option to dilute generally; the mechanism is not specific to the complete network. Observe, however, that the ring network implements the first best only for \(M = 1\). This is because it cannot provide insurance if two adjacent banks are shocked: if \(B_i\) and \(B_{i+1}\) are both shocked, then \(B_{i+1}\) cannot raise enough liquidity in the market from selling \(B_i\)'s debt.

5.2 Unobservable Liquidity Shocks

So far, we have assumed that liquidity shocks were observable but non-contractable, following the incomplete-contracts paradigm. However, if liquidity shocks are unobservable, gross positions can still implement liquidity insurance. The core mechanism is unchanged: shocked banks liquidate debt in the market and mortgage their assets to meet their liquidity shocks. However, there is one twist on the equilibrium above: not only do shocked banks sell to avoid liquidation, but not-shocked banks also sell to pool with the shocked banks. This is because they sell at a subsidy, since their portfolios are worse on average than not-shocked banks’ portfolios—not-shocked banks hold the debts of \(M\) shocked banks and \(N - 1 - M\) not-shocked banks, whereas shocked banks hold the debts of \(M - 1\) shocked banks and \(N - M\) not-shocked banks.
We make one additional assumption to construct the equilibrium: there are two markets at Date 1, first, a resale market for debt in which banks sell debts and, second, a market for new loans, in which banks can borrow from a third party in the market or from other banks. This assumption allows all banks to sell debts at a pooling price in the market as well as for banks to reallocate liquidity among themselves.

Lemma 6. Suppose the model is as specified in Section 2 except liquidity shocks are unobservable and there are Date-1 markets as described above.

Let

\[F = \frac{L - \theta y}{(1 - \pi)(N - 1)}. \]

As long \(w > N(L - \theta y) \), the complete network of gross positions with face value \(F \) implements the first best.

The following constitutes a perfect Bayesian equilibrium outcome.

Date 1

Both shocked banks and not-shocked banks sell each of the \(N - 1 \) debts they hold at price \((1 - \pi)F \).

Shocked banks borrow \(\theta y \) in the market via new senior debt.

Date 2

Shocked banks default and get \((1 - \theta)y \). Not-shocked banks do not default and get \(y - MF \).

The out-of-equilibrium beliefs are that any bank that deviates is believed to be not-shocked.

6 Conclusion

Why do banks choose to hold off-setting gross positions rather than net them out? Because they embed the option to dilute. Since banks exercise this option when they need liquidity most, unnetted gross positions implement mutually beneficial liquidity insurance. Indeed, as long as there is enough liquidity to go around, these mutual gross positions allocate liquidity efficiently. However, if there is not enough liquidity to go around, they can exacerbate liquidity shortages—with gross positions, a liquidity shortage can even trigger a systemic crisis in which all banks default.
A Proofs

A.1 Proof of Lemma 1

The result follows immediately from the argument in the text given that the probability that each of the \(N \) banks is shocked is \(\pi \).

\[\frac{\pi}{1 - \pi} (L - \theta y) \leq \theta y. \]

(5)

This can be re-written as \(\pi L \leq \theta y \), which is satisfied by (\(\star \)).

A.2 Proof of Lemma 2

Given the argument in the text, we need to show only that not-shocked banks can pay the premium out of their own liquidity, i.e. that the

\[\frac{\pi}{1 - \pi} (L - \theta y) \leq \theta y. \]

(5)

this can be re-written as \(\pi L \leq \theta y \), which is satisfied by (\(\star \)).

A.3 Proof of Lemma 3

The result follows immediately from the argument in the text.

\[\frac{\pi}{1 - \pi} (L - \theta y) \leq \theta y. \]

(5)

A.4 Proof of Lemma 4

Given the argument in the text, the result follows immediately from the fact that \(L < \theta y \) by (\(\star \)).

A.5 Proof of Proposition 1

We prove the result using the one-shot deviation principle as follows. Given the sup-posed equilibrium, we find the market prices of debt for shocked and not-shocked banks and show (i) that there are no profitable deviations at Date 2 and (ii) that there are no profitable deviations at Date 1.

\textbf{Debt prices.} In the proposed equilibrium, the shocked banks repay nothing on their interbank debts, since they must secure all their pledgeable assets \(\theta y \) to the market in order to raise \(L \) to meet their liquidity shocks (see equation (\(\star \))). Thus, the Date-1 market price of shocked banks’ debt is zero. In contrast, the not-shocked banks repay the face value of their interbank debts. Thus, the Date-1 market price of not-shocked banks debt is \(F = (L - \theta y)/(N - M) \).

\textbf{Date 2.} A shocked bank has total debt \((N - 1)F + \theta y \), comprising the interbank debt it took on with the \(N - 1 \) other banks at Date 0 and the debt it took on in the market at Date 1. It defaults since its payoff from diversion is greater than its payoff
from repayment:

\[(1 - \theta)y \geq y - (N - 1)F - \theta y. \quad (6)\]

A not-shocked bank has total debt \((N - 1)F\), comprising the interbank debt it took on with the \(N - 1\) other banks at Date 0. It has assets \(y + (N - 1 - M)F\), comprising the value of its long-term assets \(y\) and the debt owed to it from the \((N - 1 - M)F\) other not-shocked banks. It does not default since its payoff from repayment is greater than its payoff from diversion:

\[y - \left((N - 1)F - (N - 1 - M)F \right) \geq (1 - \theta)y \quad (7)\]

or

\[\theta y \geq MF = M \frac{L - \theta y}{N - M}. \quad (8)\]

This can be re-written as \(N\theta y \geq ML\), which is satisfied by \((\star)\). The bank gets payoff

\[y - \left((N - 1)F - (N - 1 - M)F \right) = y - MF. \quad (9)\]

Date 1. Given the prices above, each shocked bank has interbank debt worth

\[((N - 1) - (M - 1))F = L - \theta y, \quad (10)\]

since it holds the debt of all of the \(N - 1\) other banks, of which \(M - 1\) are shocked. Thus, the only way each shocked bank can raise \(L\) is to mortgage its assets entirely. It always prefers to do this, since if it does not raise \(L\), it is liquidated and gets zero. Thus it has no incentive to deviate to any other strategy.

A not-shocked bank can sell assets or borrow from the market to raise cash. There are two cases: (i) the bank stays solvent or (ii) the bank defaults.

Case (i): Not-shocked bank is solvent. Intuitively: two risk-neutral players—the not-shocked bank and the market—cannot enter into a profitable trade, so there is no profitable deviation for the bank. More formally: if a not-shocked bank raises \(c\) by selling assets (i.e. selling debts from other banks) and stays solvent, the repayment it receives from other banks is decreased by \(c\), since it raised \(c\) at the fair price. This is not a profitable deviation. If it raises \(c\) by borrowing and stays solvent, it must repay \(c\), since it borrowed at the fair price. This is not a profitable deviation.

Case (ii): Not-shocked bank defaults. If a not-shocked becomes insolvent, it diverts and gets \((1 - \theta)y\). This is not a profitable deviation because it is less than the payoff from staying solvent, as established above (equations \((\star)\) and \((9)\)).
A.6 Proof of Proposition 2

The main idea behind the proof reflects the fact that if two banks, \(B_i \) and \(B_j \), deviate to dilute other banks, it will make it impossible for either \(B_i \) or \(B_j \) to endure a liquidity shock, as discussed in the text (p. 11). In the formal proof, we must show that the benefits of dilution are always outweighed by the cost of liquidation for any deviation \((F_i, F_j)\), where \(F_i \) denotes the face value of debt \(B_i \) owes \(B_j \) and \(F_j \) denotes the face value of debt \(B_j \) owes \(B_i \).

There are three types of deviations to unsecured debt, either \(F_i \) and \(F_j \) both decrease, both increase, or one increases and one decreases. We rule each of these out in turn and then rule out deviations to prioritized (i.e. “secured”) debt.

The rest of the proof proceeds as follows.

0. We summarize maintained assumptions and notation.

1. We show there is no profitable deviation in which one bank increases and the other decreases its face value, i.e. in which \(F_i \leq F \leq F_j \).

2. We show that there is no profitable deviation in which both banks decrease their face values, i.e. in which both \(F_i < F \) and \(F_j < F \).

3. We show that there is no profitable deviation in which both banks increase their face values, i.e. in which both \(F_i > F \) and \(F_j > F \).

4. We show that there is no profitable deviation to prioritized debts.

Step 0: Summary of maintained assumptions and notation. To show the network is stable we need only to show that it is stable for a given equilibrium. Thus, we restrict attention to equilibria in which a shocked bank always mortgages its assets at Date 1. This is always incentive compatible, since it can never reduce a shocked banks’ payoff—a shocked bank can always hold cash and repay at Date 2.

Throughout, \(F \) refers to the equilibrium face value \(F = (L - \theta y)/(N - M) \).

Finally, note that since \(B_i \) and \(B_j \) are symmetric, the results we prove for one bank hold for the other. We do not re-write the results. E.g., when we prove that it cannot be that \(F_j \leq F < F_i \), it should be understood that thus it cannot be that \(F_i \leq F < F_j \) either.

Step 1: No deviation in which one bank increases and the other decreases its face value. If either \(F_i < F \leq F_j \) or \(F_i \leq F < F_j \), then \(B_j \) is worse off: it repays at least as much in total and gets at most as much from from \(B_i \). Thus, this cannot be a profitable deviation for \(B_j \).

Step 2: No deviation in which both banks decrease face values. Before proceeding, we note the following lemma, which allows us to focus on states in which one bank is shocked and the other is not.
Lemma 7. For any deviation to be profitable, the joint surplus when one bank is shocked and the other is not must increase, i.e. the sum of B_i’s payoff and B_j’s payoff when B_i is shocked and B_j is not shocked must be greater given the deviation to F_i and F_j than given the equilibrium F.

Proof. We first explain that the joint surplus must increase for a deviation to be profitable and then argue that we can restrict attention to states in which one bank is shocked and the other is not.

If the joint surplus is lower, then at least one bank must be worse off. Thus, the joint surplus must increase for both banks to be willing to deviate.

Now observe that the joint surplus cannot increase if either neither bank is shocked or both banks are shocked.

If neither bank is shocked, then there are two cases. Either (i) no bank defaults or (ii) a bank defaults. If (i), then the joint surplus is unchanged, since payments net out. If (ii), then the defaulting bank is worse off, since if it defaults when neither bank is shocked then it always defaults, and thus it gets less than it would without deviating.

If both banks are shocked, then they must mortgage all their assets at Date 1 to avoid liquidation. Thus, they both are at best not liquidated at Date 1 and default at Date 2. The joint surplus is at best unchanged (since both banks default if they do not deviate).\footnote{To see why both banks necessarily default when they are both shocked in a bit more detail, suppose that B_i were not to default. In this case, B_i would make a strictly lower net repayment to B_j. However, this would leave B_j unable to meet its liquidity shock. As a result, B_j would be liquidated and, thus, B_j would repay zero to B_i. But then the net repayment from B_i to B_j could not be less than zero. Since in equilibrium the net repayment is zero (both banks pay the other zero when shocked), the net repayment is not lowered, a contradiction.}

Given this lemma, we focus on how the deviation affects the joint surplus when B_i is shocked and B_j is not shocked. B_i sells other banks’ debts and gets

$$\left((N - 2) - (M - 1) \right) F + F_j < (N - M) F = L - \theta y,$$

since $F_j < F$ by hypothesis. Thus, B_i cannot raise L even if it mortgages all its assets for θy. B_i must liquidate and gets zero. This reduces its payoff by $(1 - \theta)y$, since it gets $(1 - \theta)y$ in equilibrium if it meets its liquidity at Date 1 and defaults at Date 2.

Whereas B_i is worse off, B_j may be better off, since it has less debt to repay at Date 2 given $F_j < F$. Indeed, B_j’s payoff is increased by $F - F_j$.

In order for the joint surplus to be increased, it must be that $F - F_j > (1 - \theta)y$, i.e. the benefit to B_j outweighs the cost to B_i. Since $F_j \geq 0$, this implies that $F \geq (1 - \theta)y$ or

$$\frac{L - \theta y}{N - M} \geq (1 - \theta)y,$$
which can be re-written as

\[L \geq y + (N - M - 1)(1 - \theta)y \geq y, \tag{13} \]

which is violated since \(L < y \) by assumption. Thus, the joint surplus is decreased.

Step 3: No deviation in which both banks increase face values. Given Lemma 7 above, we can focus on how the deviation affects the joint surplus when \(B_i \) is shocked and \(B_j \) is not shocked. There are two cases: Case (i) in which \(B_i \) does not default and Case (ii) in which \(B_i \) defaults. Below, we show that in neither of these cases is the joint surplus increased. Intuitively, if \(B_i \) does not default, it does not benefit from dilution, so the joint surplus is lower. If \(B_i \) does default, \(B_i \)'s payoff is unchanged and \(B_j \)'s payoff cannot increase, so the joint surplus is also (weakly) lower.

We can restrict attention to cases in which \(B_j \), the not-shocked bank, does not default, since if it defaults its payoff (and hence the joint surplus) is lowered further.

Case (i): \(B_i \) does not default. In this case, \(B_i \)'s payoff is \(y - \text{net repayment} - L \). Given that if there is no deviation, \(B_i \) defaults and gets \((1 - \theta)y \), the change in \(B_i \)'s payoff is

\[
y - \text{net repayment} - L - (1 - \theta)y = y - \left(((N - 2)F + F_i) - ((N - 2 - (M - 1))F + F_j) \right) - L - (1 - \theta)y \tag{14}
\]

\[
= \theta y - L + F_j - F_i - (M - 1)F. \tag{15}
\]

Since \(B_j \) is not shocked and does not default, the change in \(B_j \)'s payoff is at most \(F_i - F_j \). Thus, the change in the joint surplus is at most

\[
\theta y - L + F_j - F_i - (M - 1)F + F_i - F_j = \theta y - L - (M - 1)F \tag{17}
\]

\[
= \theta y - L - \frac{M - 1}{N - M}(L - \theta y) \tag{18}
\]

\[
= -\frac{M - 1}{N - M}(L - \theta y) < 0, \tag{19}
\]

since \(L > \theta y \) by (13). Thus, the joint surplus is decreased.

Case (ii): \(B_i \) defaults. In this case, \(B_i \)'s payoff is \((1 - \theta)y \), which is the same as when there is no deviation. In contrast, \(B_j \) does not default and must repay an additional \(F_j - F \). However, it may also recover more from \(B_i \) given \(B_i \)'s default. With no deviation, \(B_j \) recovered zero from \(B_i \) given default. Given the deviation, it may recover something positive. In particular, it may get the increase in \(B_i \)'s total pledgeable assets
(θy plus its financial assets), which is equal to

$$\theta y + \left(N - 2 - (M - 1) \right) F + F_j - L = (N - M) F + F_j - F + \theta y - L$$

(20)

$$= F_j - F,$$

(21)

having substituted for the equilibrium face value $F = (L - \theta y)/(N - M)$ in some places.

Thus, the change in B_j’s payoff is at most

$$- (F_j - F) + (F_j - F) = 0.$$ \hspace{1cm} (22)

Thus, the joint surplus is not increased. \hspace{1cm} (20)

Step 4: No deviation to prioritized debt. Finally, suppose B_i prioritizes B_j’s debt. We first consider B_i’s payoff when it is shocked and then when it is not shocked.

If B_i is shocked, then B_i cannot mortgage its assets to raise liquidity in the market, since the equilibrium face value F is determined such that B_i must offer new creditors the senior claim on all the pledgeable assets θy in order to raise L (equation (2)).

Thus, B_i is liquidated. B_i gets zero and, hence, cannot repay B_j (even though B_j was prioritized).

If B_i is not shocked and it does not default, B_i’s repayments are not affected by priority. It is no better off than in any deviation to unsecured debt, as ruled out above. If B_i is not shocked and it defaults, it is worse off than it would be if it did not deviate (since then it defaults only if it is shocked).

In summary, if a bank prioritizes its assets, it is worse when it is shocked and no better off when it is not shocked. \hspace{1cm} \Box

A.7 Proof of Corollary \[1\]

The result follows immediately from Proposition \[1\] \hspace{1cm} \Box

A.8 Proof of Proposition \[3\]

We first show that shocked banks are liquidated at Date 1 and then that not-shocked banks default at Date 2.

Shocked banks fail at Date 1. A shocked bank can raise at most \((N - 1) - (M' - 1))F = (N - M')F\) from selling its debt. Thus, the maximum it can raise is

$$\theta y + (N - M')F = \theta y + (N - M') \frac{L - \theta y}{N - M} < L.$$ \hspace{1cm} (23)

\hspace{1cm} It might be worth pointing out that the joint surplus will actually be decreased, since we have assumed that debt is pari passu and therefore B_j would not capture all the increase in B_i’s total pledgeable assets as in equation \[21\].
This holds since $M' > M$, following from the hypothesis that $M' > (N - M)\theta y/(L - \theta y)$ and (2).

Not-shocked banks default at Date 2. A not-shocked bank’s payoff after repayment is lower than its payoff $(1 - \theta)y$ from default:

\begin{align*}
y + (N - M' - 1)F - (N - 1)F &= y - M' \frac{L - \theta y}{N - M} \\
&< (1 - \theta)y,
\end{align*}

since $M' > (N - M)\theta y/(L - \theta y)$ by hypothesis.

\[\square\]

A.9 Proof of Lemma 5

The equilibrium strategies are exactly as in Proposition 1 and almost the same proof applies. We must only check the corresponding conditions for the ring network, that (i) the single shocked bank can raise enough liquidity at Date 1 and (ii) the not-shocked banks do not default at Date 2.

Shocked bank. In the ring network, the shocked bank, say B_i, has the debt of one bank, B_{i-1}, to sell to raise liquidity, where we suppose $1 < i < N - 1$ w.l.o.g. to keep notation simple below. Thus, it raises $F = L - \theta y$ and it can meet its liquidity shock L by mortgaging its assets to raise θy in the market. It defaults at Date 2 and the value of its debt is zero at Date 1.

Not-shocked banks. No not-shocked bank defaults at Date 2. To see this, consider B_{i+1}, that holds the debt of the shocked bank B_i as an asset. B_{i+1} does not default whenever its payoff from repaying F to B_{i+1} is greater than its payoff from diversion, or

\[y - F = y - (L - \theta y) \geq (1 - \theta)y.\]

This can be re-written as $2\theta y \geq L$, which holds by hypothesis.

B_{i+1} has the same liabilities as all other not-shocked banks but lower assets. Since B_{i+1} does not default, no other not-shocked bank defaults either.

\[\square\]

A.10 Proof of Lemma 6

The proof is analogous to the proof of Proposition 1. We apply the one-shot deviation principle as follows. Given the supposed equilibrium, we find the market price of debt for shocked and not-shocked banks and show (i) that there are no profitable deviations at Date 2 and (ii) that there are no profitable deviations at Date 1.

Debt price. In the proposed equilibrium, the shocked banks repay nothing on their interbank debts (since they have secured all their pledgeable assets θy). Thus, the
Date-2 value of shocked banks’ debt is zero. In contrast, the not-shocked banks repay the face value of their interbank debts. Given we have supposed a pooling equilibrium, all debt trades at the average price at Date 1

\[
\text{Date-1 debt price} = \frac{M}{N} \times 0 + \frac{N - M}{N} \times F = (1 - \pi)F. \tag{27}
\]

Date 2. A shocked bank has total debt \((N - 1)F + \theta y\), comprising the interbank debt it took on with the \(N - 1\) other banks at Date 0 and the debt it took on in the market at Date 1. It defaults since its payoff from diversion exceeds its payoff from repayment:

\[
(1 - \theta)y \geq y - \left((N - 1)F + \theta y \right). \tag{28}
\]

Recall that, unlike in the equilibrium of the baseline model, in this equilibrium a not-shocked bank raises cash \((N - 1)(1 - \pi)F\) at Date 1 as well, which it either holds in cash or lends out senior at the risk-free rate (zero) in the debt market. Still, as in the equilibrium of the baseline model, it does not default since its payoff from repayment exceeds its payoff from diversion:

\[
y - \left((N - 1)F - (N - 1)(1 - \pi)F \right) \geq (1 - \theta)y \tag{29}
\]
or, substituting in for \(F\),

\[
(N - 1)\pi \frac{L - \theta y}{(1 - \pi)(N - 1)} \leq \theta y. \tag{30}
\]

This can be re-written as \(\pi L \leq \theta y\), which is satisfied by (27).

Date 1. Given the price above, each bank has interbank debt worth

\[
(N - 1)(1 - \pi)F = L - \theta y. \tag{31}
\]

Thus, the only way that a shocked bank can raise \(L\) is to mortgage its assets entirely. It always prefers to do this, since if it does not raise \(L\), it is liquidated and gets zero.

A not-shocked bank can sell its assets or not. If it pools with the shocked bank, it sells other banks’ debt at the pooling price in equation (27). Otherwise, it is believed to be not-shocked, given the out-of-equilibrium beliefs. At Date 1, it holds the debt of \(N - 1\) other banks, \(M\) of which are shocked (with debt worth zero) and \(N - M\) of which are not-shocked (with debt worth \(F\)). Thus, a not-shocked bank holds other banks’ debt with average value

\[
\frac{M}{N - 1} \times 0 + \frac{(N - 1 - M)}{N - 1} \times F < \frac{N - M}{N} F = \text{Date-1 debt price}.
\]
I.e., if the not-shocked bank separates, its assets are worth less than their market price given the pooling equilibrium. Thus, a not-shocked bank strictly prefers to sell at the pooling price than to separate.
B Table of Notations

<table>
<thead>
<tr>
<th>Dates and Players</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(t \in {0, 1, 2})</td>
<td>time index</td>
</tr>
<tr>
<td>(B_i)</td>
<td>(i)th bank for (i \in {1, \ldots, N})</td>
</tr>
<tr>
<td>(C)</td>
<td>outside creditor/“competitive capital market”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assets, Liquidity Shocks, and Endowments</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>banks’ Date-2 asset value</td>
</tr>
<tr>
<td>(\theta)</td>
<td>pledgeable fraction of assets</td>
</tr>
<tr>
<td>(L)</td>
<td>banks’ liquidity need if hit by liquidity shock</td>
</tr>
<tr>
<td>(M)</td>
<td>number of banks hit by liquidity shocks</td>
</tr>
<tr>
<td>(\pi \equiv M/N)</td>
<td>probability a bank is hit by liquidity shock</td>
</tr>
<tr>
<td>(w)</td>
<td>C’s wealth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prices</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>Face value of interbank debt</td>
</tr>
</tbody>
</table>

