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Abstract
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1 Introduction

Monetary policy primarily affects the macroeconomy through its effect on financial markets. In

standard monetary models, this interaction between the financial and real sides of the economy

primarily occurs through short-term interest rates, as changes in monetary policy affect the

conditional mean of the short-term interest rate which in turn affects macroeconomic variables

such as output, employment, and inflation. Researchers using these models typically abstract

from another channel through which monetary policy affects financial markets and the macroe-

conomy. In particular, they do not study how monetary policy affects the conditional variances

of variables or the perceived riskiness of the economy.1 Interestingly, recent evidence suggests

that monetary policy does affect risk, implying that standard monetary models are potentially

missing an important channel through which monetary shocks propagate from the financial to

the real economy. For instance, empirical evidence suggests that while an unanticipated easing

of monetary policy lowers real short-term interest rates, it also has a large quantitative effect

on equity returns occurring through a reduction in the equity premium.2

In this paper, we develop a DSGE model in which monetary policy affects the economy

through the standard interest rate channel and through its effect on economic risk. The key

feature of our model is that asset and goods markets are segmented, because it is costly for

households to transfer funds between these markets. Accordingly, households may only infre-

quently update their desired allocation of cash between a checking or liquid account devoted to

purchasing goods and a brokerage or illiquid account used for financial transactions. The optimal

decision by an individual household to rebalance their cash holdings is a state-dependent one,

reflecting that doing so involves paying a fixed cost in the presence of uncertainty. Households

are heterogenous in this fixed cost, and only those households that rebalance their portfolios

during the current period matter for determining asset prices. Because the fraction of these

1 See Alvarez, Atkeson, and Kehoe (2007) for an extended discussion of this point. See also Atkeson and
Kehoe (2008) and Cochrane (2008).

2 See Bernanke and Kuttner (2005). Additional evidence reinforcing the influence of monetary policy shocks
on equity prices include Ehrmann and Fratzscher (2004), Ammer, Vega, and Wongswan (2008), and references
therein.
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household changes over time in response to both real and monetary shocks, risk in the economy

endogenously varies over time.

Evidence from the household finance literature provides strong support for infrequent portfo-

lio rebalancing. For instance, Brunnermeier and Nagel (2008) show that, while there is consider-

able heterogeneity across households in transferring funds between a liquid and illiquid account,

there is also substantial inertia by households, on average, in rebalancing these accounts.3 We

show that with this feature our model is able to account for the Bernanke and Kuttner (2005)

evidence. In particular, a monetary easing in our model leads to a fall in real interest rates

and a reduction in the equity premium. For reasonable calibrations of the model, the reduction

in the equity premium is an important reason why stock prices rise in response to a monetary

easing. In addition, we show that the model is able to account for the observed means on equity

and risk-free rates with a power utility function with a reasonable degree of risk aversion.

Besides examining the positive implications of the model, we explore the normative implica-

tions of alternative monetary policy rules including inflation-targeting rules, a constant money

growth rate, and rules that respond systematically to changes in aggregate activity driven by

technology shocks. We find that the response of the equity premium to shocks depends critically

on the systematic response of monetary policy. For inflation targeting rules or rules in which the

monetary policy is procyclical, the equity premium moves countercyclically. However, for very

aggressive countercyclical policies, the equity premium moves acyclically or even procyclically.

A systematic change to monetary policy affects risk, because it influences a household’s incen-

tive to rebalance her portfolio, changing the behavior of households that matter for determining

asset prices, and ultimately the amount of risk borne by these households.4

Changes in the systematic component of monetary policy have important distributional

consequences in the model. Because of these effects, countercyclical monetary policies imply

aggregate welfare gains over inflation targeting or constant money growth rules. Countercycli-

cal policy works well, because it improves the welfare of the majority of households, who tend

3 Also, see Calvet, Campbell, and Sodini (2009) and Bilias, Georgarakos, and Haliassos (2008).
4 While systematic policy has an important influence on equity prices, monetary policy shocks, per se, account

for only a small fraction of the average equity premium and the volatility of equity prices in the model.
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to rebalance their portfolios infrequently. By transferring resources toward these households

during booms, it allows them to raise their consumption without incurring the fixed costs asso-

ciated with transferring funds across their brokerage and checking accounts. Thus, this policy

effectively replicates how these households would respond, if they did not face these fixed costs.

Our paper is related to the literature on limited participation in financial markets in monetary

economies (e.g., Lucas (1990)) and in particular to Alvarez, Atkeson, and Kehoe (2009), who

use an endogenously segmented market model to study how time-varying risk can explain the

forward premium anomaly in currency markets.5 Our paper departs in important ways from

their analysis. In their model, a household that does not make a state-contingent transfer is

better described as inactive rather than inattentive, since these households move no funds from

financial to goods markets in the current period. By contrast, a household that chooses not to

make a state-contingent transfer in our framework still transfers funds across markets; however,

she does so in an inattentive manner, using a preset plan to allocate funds in the current period.6

Our paper is also related to Guvenen (2009) and Chien, Cole, and Lustig (2011). Guvenen

(2009) develops a model of limited participation model for stocks and heterogeneous preferences

in which non-stockholders have a smaller elasticity of intertemporal substitution than stock-

holders. He shows that the model does relatively well in matching the mean and volatility of

the equity premium, generates countercyclical risk, and has reasonable business cycle proper-

ties. Chien, Cole, and Lustig (2011) show how a model in which some households actively trade

stocks and bonds and others hold either a fixed fraction or do not trade equity can account for

the mean and volatility of the equity premium and risk-free rate and generates countercycli-

cal risk. A major difference in this paper relative to Chien, Cole, and Lustig (2011) is that,

contrary to these authors, we do not assume that investors fix their periods of inattention, but

instead investors in our model choose their periods of inattention optimally in a state-contingent

manner.

Moreover, we develop a monetary framework in which goods markets are segmented from

5 See also Bacchetta and van Wincoop (2010) who study the forward premium anomaly in a model with
infrequent portfolio adjustment.

6 See Duffie (2010) for a recent survey emphasizing the importance of modelling inattentive behavior in
financial markets.
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asset markets. In contrast, both Guvenen (2009) and Chien, Cole, and Lustig (2011) emphasize

segmentation between stocks and bonds in a real economy context.7 This allows us to use the

model as a laboratory to provide novel insights about the positive and normative implications

of monetary policy and its role in contributing to time-varying risk premia.

The rest of this paper proceeds as follows. The next section describes the model. In Section

3 we use the model to explore some positive and normative effects of alternative monetary policy

rules. We pay special attention to the effects of monetary policy on endogenous fluctuations in

risk. Section 4 concludes.

2 The Model

The economy is populated by a large number of households, firms, and a government sector.

Trade occurs in financial and goods markets in separate locations so that they are segmented

from each other. There are two sources of uncertainty in our economy — aggregate shocks to

technology, θt, and money growth, µt. We let st = (θt, µt) index the aggregate event in period t

with s0 given, and st = (s1, ..., st) denote the state, which consists of the aggregate shocks that

have occurred through period t.

2.1 Firms

There is a large number of perfectly competitive firms. Each of these firms has access to the

following technology for converting capital, K(st−1), and labor, L(st), into output, Y (st) at

dates t ≥ 1:

Y (st) = exp(θt + ηt)K(st−1)αL(st)1−α. (1)

7 Chien, Cole, and Lustig (2011) do not consider growth and introduce an exogenous amount of leverage
to explain the equity premium. Our analysis abstracts from the presence of leverage but incorporate growth
into the analysis, which has important implications for asset prices and in particular for the average level of the
risk-free rate.
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The variable η determines the economy’s growth rate and θt is an aggregate technology shock

which follows a first-order autoregressive process:

θt = ρθθt−1 + ϵθt, (2)

where ϵθt ∼ N(0, σ2
θ) for all t ≥ 1.

Capital does not depreciate, and there exists no technology for increasing or decreasing its

magnitude. We adopt the normalization that the aggregate stock of capital is equal to one.

Labor is supplied inelastically by households, and its supply is normalized to one. At each date

t ≥ 1, a firm hires labor, sells its output to the economy’s households, sells its existing capital

to other firms, and purchases new capital for production next period. Accordingly, its profits or

dividends at date t are:

D(st) = Y (st)− w(st)L(st)− pK(s
t)K(st) + pK(s

t)K(st−1), (3)

where w(st) and pk(s
t) denote the real wage and the real price of capital, respectively.

As in Jermann (1998), a firm is infinitely-lived and chooses {K(st), L(st)}∞t=1 to maximize

its discounted stream of profits:
∞∑
t=1

∫
st
Q(st)D(st)dst, (4)

subject to equations (1) and (3) taking real wages, the level of technology and K(s0) as given.

A firm also takes its stochastic discount factor, Q(st), as given, and later a firm’s discount factor

is related to the marginal rate of substitution of its owners.

2.2 Households

There are a large number of households of type γ, which denotes a household’s fixed cost of

making state contingent transfers from a brokerage account to a checking account. This cost

is constant across time but differs across household types according to the probability density

function f(γ). Since this is the only difference across households, we index a household by γ.
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Brokerage Account. At date 0, a household learns her type and engages in an initial

round of trade in the asset market, as goods markets do not open until date 1. With initial

asset holdings, B(γ) in her brokerage account at date 0, the household trades equity shares in

the firms, S(s0, γ), with other households and a complete set of one-period contingent claims,

B(s1, γ), issued by the government. Accordingly, the flow of funds in a household’s brokerage

account at date 0 is given by:

B(γ) = pK(s0)S(s0, γ) +

∫
s1

q(s1)B(s1, γ)ds1, (5)

where q(s1) is the price of the bond in state, s1.

For dates t ≥ 1, a household’s brokerage account evolves according to:

B(st, γ) + P (st)(pK(s
t) +D(st))S(st−1, γ) =

∫
st+1

q(st, st+1)B(st, st+1, γ)dst+1 + (6)

P (st)pK(s
t)S(st, γ) + exp(ηt)P (st)A(s0, γ) + P (st)[x(st, γ) + exp(ηt)γ]z(st, γ), (7)

where P (st) is the aggregate price level and A(s0, γ) is a non-state contingent transfer of funds

from a household’s brokerage account to checking account at date t chosen at date 0. A household

can alter this initial transfer plan by choosing x(st, γ) ̸= 0, which requires paying γ, a fixed cost

of foregone output. Accordingly, z(st, γ) is an indicator variable equal to one if a household opts

to pay her fixed cost and make a state-contingent transfer and equal to zero if a household does

not.

Households that choose z(st, γ) = 0 are referred to as inattentive households, since their

transfers are based on outdated plans that do not depend on the information about the current

state. As in Reis (2006), we view the fixed cost, γ, and a household’s reliance on a predetermined

plan as reflecting the notion that it is costly for households to continually acquire and process

information in forming expectations and making decisions. In principle, we could allow the

predetermined plan to be time-dependent, updated infrequently by a household; however, for

simplicity, we assume households choose this plan once and for all at date 0.8

8 We also assume that A(s0, γ) is fully indexed to inflation. Altering this assumption so that the non-state
contingent plan is not fully indexed to inflation would tend to magnify the model’s monetary non-neutrality.
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A key difference between the households in our model and other market segmentation models

is that we allow households to set up predetermined transfer plans. As we emphasize later, with-

out these plans the model is unable to generate an average equity premia in line with the data.

This feature also has an attractive interpretation, as it allows us to model inattentive behavior

in a tractable way. Our approach in modelling inattentive households differs from Reis (2006) in

that we focus on the decision to transfer funds across a brokerage and checking account – the key

decision in a segmented market model – rather than on the amount of household consumption or

savings.9 Moreover, Reis (2006) focuses on explaining puzzles regarding consumption behavior

rather than asset pricing.

Checking Account. At each date t ≥ 1, a household purchases goods for consumption,

c(st, γ), and works in the labor market. To purchase goods in period t, a household uses cash

in her checking account:

P (st)c(st, γ) = M(st−1, γ) + P (st)x(st, γ)z(st, γ) + P (st) exp(ηt)A(s0, γ). (8)

At the beginning of period t, a household has M(st−1, γ) dollars in her checking account with

which to purchase goods. A household also receives cash from her non-state contingent transfer

plan, and if she chooses to incur her fixed cost, she receives P (st)x(st, γ).10

We have focused on transfers only between a checking account (i.e., more liquid assets) and

a brokerage account (i.e., less liquid assets). In practice, a household has access to a wider

range of financial products such as credit cards and other “near-money” assets that blur this

distinction. In principle, one could incorporate such near-money assets by incorporating an

additional account into the model whose assets can not directly be used to purchase goods

but whose transaction cost is smaller than for the financial assets in the brokerage account.

However, extending the model along these lines complicates the analysis and we abstract from

9 Our approach also differs from Reis (2006) in the details of how plans are set and revised. As in Reis (2006),
a household pays a fixed cost to revise her plan; however, in Reis (2006) adjustments to a household’s plan do
not depend on the current state but on the state at a pre-set date and through these adjustments outdated plans
are revised.

10 A household can reoptimize by setting x(st, γ) < 0, thereby transferring additional cash from her checking
to brokerage account. Similarly, a household is free to choose A(s0, γ) < 0.
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this possibility.

Each household inelastically supplies her labor to the economy’s firms. With a household’s

labor supply normalized to one, a household earns real wage income, w(st). This wage income

is received at the end of the period so it can not be used for current consumption. Accordingly,

a household cash in its checking account at the end of period t is given by:11

M(st, γ) = P (st)w(st). (9)

A household’s problem is to choose A(s0, γ) and {c(st, γ), x(st, γ), z(st, γ),

M(st, γ), B(st, γ), S(st−1, γ)}∞t=1 to maximize:

∞∑
t=1

∫
st
βtU(c(st, γ))g(st)dst, (10)

subject to equations (5)-(9), taking prices and initial holdings of money, bonds, and stocks as

given. In equation (10), the function g(st) denotes the probability distribution over history st.

2.3 Monetary Policy

The government issues the economy’s one-period state-contingent bonds and controls the econ-

omy’s money stock, Mt. Its budget constraints at date 0 is B =
∫
s1
q(s1)B(s1)ds1 and at dates

t ≥ 1, its budget constraint is:

B(st) +Mt−1 = Mt +

∫
st+1

q(st, st+1)B(st, st+1)dst+1, (11)

with M0 > 0 given.12 Monetary policy is specified to follow a rule for money growth, µt =

log
(

Mt

Mt−1

)
, of the form:

µt = (1− ρµ)µ+ ρµµt−1 + dθθt + ϵµt, (12)

11 We have abstracted from the possibility that a household may want to save extra cash in their checking
and/or brokerage accounts since equations (6) and (8) always bind. By doing so, we do not need to keep track
of each individual’s cash holdings, simplifying the analysis.

12 To simplify the analysis, the government does not levy taxes or consume resources but only conducts open
market operations with money and bonds.
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where ϵµt ∼ N(0, σ2
µ) for all t ≥ 1. This rule allows for a systematic response of money to

changes in technology (or equivalently output given that capital and labor are fixed).13 When

dθ > 0, money growth is procyclical, and when dθ < 0, money growth is countercyclical. For

our benchmark rule, we set dθ = 0.

The simple rules we evaluate include a constant money supply rule in which µ = ρµ = dθ =

σµ = 0, a procyclical rule in which µ = ρµ = σµ = 0 and dθ > 0, and a countercyclical rule in

which µ = ρµ = σµ = 0 and dθ < 0. An additional rule that we consider that is not nested

by equation (12) is a zero inflation or a price level targeting rule. This rule requires that µt be

chosen such that inflation, π(st) = P (st)
P (st−1)

= 1, for all st.

2.4 Equilibrium Characterization

The economy’s resource constraint is:

Y (st) = exp(θt + ηt) =

∫ ∞

0

[
c(st, γ) + exp(ηt)γz(st, γ)

]
f(γ)dγ. (13)

We normalize the supply of equity traded by households to one and require that B(st) =∫∞
0

B(st, γ)f(γ)dγ for all t ≥ 0. The economy’s price level and inflation rate can be obtained

from:14

P (st) = Mt exp(−θt − ηt), (14)

which implies that velocity is constant and the economy’s inflation is given by:

π(st) =
P (st)

P (st−1)
= exp(µt + θt−1 − θt − η). (15)

The consumption of an inattentive household (i.e., one that sets z(st, γ) = 0) is given by:

cI(s
t, γ) =

w(st−1)

π(st)
+ eηtA(s0, γ) = (1− α)eθt−µt+ηt + eηtA(s0, γ), (16)

13 We study an exchange economy to focus on the distributional effects of monetary policy and its role in
inducing movements in risk. In Gust and López-Salido (2011), we allow for endogenous labor and capital
accumulation albeit we do not address monetary policy issues.

14 To derive equation (14), one needs to combine equations (8) and (13) with the money market clearing
condition:

Mt =

∫ ∞

0

{
M(st−1, γ) + P (st)

[
x(st, γ) + exp(ηt)γ

]
z(st, γ) + P (st) exp(ηt)A(s0, γ)

}
f(γ)dγ.
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because optimization by firms implies w(st) = (1 − α)eθt+ηt From this expression, we can see

that inflation is distortionary, since, all else equal, it reduces the consumption of inattentive

households. Accordingly, an unanticipated increase in money that raises inflation may induce a

household to pay her fixed cost and become attentive.

In the Appendix A, we show that there is perfect risk-sharing amongst attentive households

(i.e. those who choose z(st, γ) = 1) and that the initial asset holdings, B̄(γ) can be set so that:

cA(s
t, γ) = cA(s

t). (17)

Accordingly, the consumption of attentive households, cA(s
t), is independent of γ. To further

characterize, the consumption of attentive and inattentive households, we need to determine

the flow of transfers from a household’s initial plan, A(s0, γ). As derived in the Appendix A,

household’s choice of A(s0, γ) satisfies:
∞∑
t=1

∫
st
βt

[
U ′(cA(s

t))− U ′(cI(s
t, γ))

]
(1− z(st, γ))g(st)dst = 0. (18)

This latter condition implies that in states of the world in which a household is inattentive

(i.e., z(st, γ) = 0), the household chooses A(s0, γ) to equate her expected discounted value of

marginal utility of its consumption to the expected discounted value of the marginal utility of

consumption of the attentive households. Accordingly, the non-state contingent transfer plan

provides some consumption insurance to households with large fixed costs.

We now characterize a household’s decision for z(st, γ) given optimal decisions for c(st, γ),

x(st, γ), and A(s0, γ). As described in Appendix A, a household γ will choose to be attentive

(i.e., z(st, γ) = 1) if γ ≤ γ̄(st) where γ̄(st) is defined by:

U
(
cA(s

t)
)
− U

(
cI(s

t, γ̄(st))
)
= U ′ (cA(st)) [cA(st)− cI(s

t, γ̄(st)) + exp(ηt)γ̄(st)
]
, (19)

and inattentive otherwise. Equation (19) implies that there is a marginal household with fixed

cost γ̄(st) whose net gain of being attentive is equal to the cost of transferring funds across

the two markets. The net gain, U (cA(s
t)) − U (cI(s

t, γ)), is simply the difference in the level

of utility from being attentive as opposed to inattentive. The net cost of making the state-

contingent transfer comprises the fee γ and the amount transferred by the household, since

x(st, γ) = cA(s
t)− cI(s

t, γ).
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The asset pricing kernel in the economy depends on the consumption of attentive households

and is given by:

m(st+1) =
q(st+1)

g(st+1|st)
= β

U ′[cA(s
t+1)]

U ′[cA(st)]
, (20)

where g(st+1|st) = g(st+1)
g(st)

denotes the probability of state st+1 conditional on state st. Ac-

cordingly, the pricing kernel is the state-contingent price of a security expressed in consumption

units normalized by the probabilities of the state. We can also relate a firm’s stochastic discount

factor to the state-contingent prices of securities, as Q(st) =
∏t

j=1 q(s
j).

To see how the extensive margin affects the pricing kernel, it is useful to rewrite the resource

constraint as:

cA(s
t) = F [γ̄(st)]−1

[
exp(θt + ηt)−

∫ ∞

γ̄(st)

cI(s
t, γ)f(γ)dγ − exp(ηt)

∫ γ̄(st)

0

γf(γ)dγ

]
, (21)

where F (γ) denotes the cumulative distribution function of γ. From expression (21), it is clear

that γ̄(st), the fraction of attentive households, varies with the state and that changes in this

fraction can alter the path of attentive consumption and thus the marginal utility of attentive

consumption and the pricing kernel.

The pricing kernel can be used to determine the real risk-free rate (rf ) as well as the real

return on equity (re). These returns are given by:

[1 + rf (st)]−1 =

∫
st+1

m(st, st+1)g(st+1|st)dst+1, (22)

1 =

∫
st+1

m(st, st+1)[1 + re(st, st+1)]g(st+1|st)dst+1. (23)

Optimization by firms implies that in equilibrium the return on equity satisfies:

(1 + re(st+1)) =
αY (st+1)

K(st)
+ pK(s

t+1)

pK(st)
. (24)

Using equations (22) and (23), we can then define the equity premium in our economy as:15

Et[1 + ret+1]

1 + rft
= 1− covt

(
mt+1, 1 + ret+1

)
. (25)

15 For convenience we have switched notation to express both the expected return on equity and the covariance
between the pricing kernel and the return on equity, which are both conditional on the state of the world at date
t.
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3 Quantitative Analysis

In this section, we show that the model has reasonable asset pricing properties and in line with

empirical evidence generates a liquidity effect and a decline in the equity premium following an

unanticipated monetary injection. We then use the model as a laboratory for evaluating the

performance of alternative monetary policy rules. Before doing so, we briefly discuss the model’s

calibration and a deterministic version of the model.

3.1 Functional Forms and Calibration

Household’s preferences are given by the isoelastic utility function, U(c) = c1−σ

1−σ
, where σ is the

coefficient of relative risk aversion. We follow the discussion and the survey of the literature

in Hall (2009) and Guvenen (2009), and set the relative risk aversion coefficient equal to 4.

Consistent with a quarterly model, we set η = 0.0047, implying the economy grows at an

annualized rate near 2%, and choose β = 0.997. The economy’s capital share, α, is 0.36.

For the distribution of the fixed cost, F (γ), we assume that there is some small positive

mass of households with zero fixed costs and choose the remaining distribution, 1 − F (0), to

be log-normal so that log(γ) ∼ N(log(γm), σ
2
m). We set F (0) = 0.0543, γm = 2.9075, and

σm = 1, which imply that, on average, about 6 percent of households are attentive in a quarter

with some households rebalancing frequently and a large mass of households rarely rebalancing.

Such a calibration is broadly in line with evidence that household portfolio allocation displays

substantial inertia.16

For the monetary policy shock, we set dθ = 0, ρµ = 0.95 and σµ = 0.001. This value for ρµ

is in line with the value used by Alvarez, Atkeson, and Kehoe (2002). We set µ = 0.005 so that

average, annualized money growth rate is 2%. We calibrated the technology shocks based on

the time series properties of aggregate consumption. We set ρz = 0.985 and chose σz = 0.008

so that the standard deviation for annualized consumption growth is 3 percent, consistent with

annual data on U.S. consumption from 1889-2009. As discussed in Appendix B, the model is

16 See, for example, Brunnermeier and Nagel (2008) and Bonaparte and Cooper (2009).
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solved numerically using global methods.17

3.2 Non-Stochastic Steady State

In a deterministic environment, the model reduces to a representative agent economy. According

to equation (18), a household that chooses to be inattentive obtains the same level of consump-

tion as an attentive household in non-stochastic steady state. An inattentive household can

obtain such a level of consumption by choosing her initial plan such that c̃A = c̃I =
1−α

exp(µ)
+ A,

where A takes on the same value across all inattentive households and the tildes over the vari-

ables reflect that these variables have been detrended by exp(ηt). With consumption the same

across households, all households with γ > 0 will be inattentive, and the households with γ = 0

will be indifferent between using x or the non-state contingent transfer, A.

The non-stochastic steady state highlights the important role that the initial transfer scheme

plays in the model. Without this plan, the model is similar to other models of endogenous seg-

mentation such as Alvarez, Atkeson, and Kehoe (2009). In that case, the model’s interpretation

is quite different, as a household that opts not to transfer funds is inactive rather than inat-

tentive. This difference has important implications for the non-stochastic steady state, as an

inactive household has a much greater incentive than an inattentive household (who makes use

of her initial plan) to incur her fixed cost and transfer funds. Accordingly, the consumption of

an active household exceeds the consumption of inactive households, who would only receive

c̃I = 1−α
exp(µ)

. As a result, an increase in steady-state inflation, µ, would lower c̃I and raise the

number of active households. In contrast, in our model, inattentive households choose A > 0

so that their consumption level reflects not only the proceeds from working but the proceeds

from capital markets. An increase in µ induces inattentive households to choose a larger A and

the degree of market segmentation remains unaffected: the inattentive households are still those

with γ > 0.

17 We found that perturbation methods were only reliable for small shocks due to the state dependent behavior
of the number of attentive households. In particular, for positive technology shocks, the number of attentive
households is increasing in the level of technology. However, for large negative technology shocks, it is decreasing
in the level of technology.
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3.3 Asset Pricing Implications

Table 1 displays several statistics of interest from alternative versions of the model and compares

them with their empirical counterparts taken from Guvenen (2009). As a reference point, the

third column of the table reports the results from the economy with a single representative

household.18 For our baseline calibration, with a relatively low coefficient of relative risk aversion,

as discussed in Mehra and Prescott (1985), the representative agent model is unable to replicate

prominent asset pricing features: the average equity premium is only 0.2% and the average

(real) risk-free rate is 8.8% on an annualized basis. As discussed in Weil (1989), it is possible to

match the observed equity premium in this model by increasing σ; however, this comes at the

cost of generating a counterfactual average risk-free rate.

The fourth column of Table 1 shows the results from the benchmark calibration of the model

with inattentive behavior. This model is consistent with the high average equity premium and

the low and smooth risk-free rate observed in the data. The model’s Sharpe ratio at 0.18

is below the point estimate based on U.S. data, reflecting that the volatility of excess stock

returns exceeds that observed in the data. Still, the Sharpe ratio is much higher than in the

representative agent economy and lies within the 95 percent confidence interval.

A key reason the model can generate a large average equity premium with σ = 4 is that the

volatility of consumption of attentive households is higher than average consumption volatility.

As shown in Table 1, the volatility of consumption growth for households is 5.6 times greater

than for average households. The consumption volatility of an attentive household is higher

than an inattentive household, because the two aggregate shocks only affect the consumption of

the latter type of household through changes in labor income. In contrast, attentive households

experience fluctuations in both labor and capital income. A household that rebalances more

frequently accepts this higher consumption volatility in return for a higher average level of

consumption. This implication is in line with evidence of Parker and Vissing-Jorgensen (2009)

provided that ‘high consumption’ households are in fact more likely to rebalance. In particular,

these authors find that the exposure to changes in aggregate consumption growth of households

18 We use the calibrated parameters discussed above except that FL = 1 in this case.
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in the top 10 percent of the consumption distribution is about five times that of households in

the bottom 80 percent.

As shown in Table 1, inattentive behavior plays a critical role in generating the average

equity premium. When the households do not have access to the non-state contingent plan

(i.e., A(s0, γ) = 0), the asset pricing implications are similar to those of the representative agent

model: the average equity premium is close to zero while the average risk-free rate is above

8 percent. Without the financial plan, the average fraction of active households is 29 percent.

Even if we lower this average fraction to 6 percent by increasing the fixed costs, the asset pricing

implications remain largely unchanged and the average cost of rebalancing is over 27 percent of

GDP. In comparison, the average cost of rebalancing in the benchmark model with the financial

plan is 0.2 percent of GDP.

In the model without inattentive behavior, the consumption of inactive household is equal

to her labor income; thus, it inherits both the mean and volatility of this income. However,

when a household has the ability to make transfers based on an initial plan, this household

will transfer funds from her brokerage to checking account (i.e., A(θ0, γ) > 0), gaining access

to capital income. Accordingly, the level of her consumption increases relative to the case in

which she does not have access to this plan and the volatility of her consumption falls given

the financial plan’s non-state contingent nature. By reducing the consumption volatility of

households that do not make state contingent transfers, the financial plan tends to increase the

volatility of the consumption of the attentive households. This higher volatility arises because

with an inattentive household’s consumption partially buffered by the non-state contingent plan,

an attentive household’s consumption becomes more sensitive to capital income flows derived

from equity markets.

To understand why the sensitivity of attentive consumption increases for larger values of

A more formally, consider a version of the model in which there is no growth and there are

only two types of households: an attentive household with γ = 0 and an inattentive household

with γ = ∞ who receives cI = (1 − α) exp(θ − µ) + A. From the resource constraint, it

follows that cA = F (0)−1 [exp(θ)− (1− F (0))cI ], where F (0) denotes the fraction of attentive
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households. As shown in Appendix A, taking the derivative of attentive consumption with

respect to technology shocks yields:

d log(cA)

dθ

∣∣∣∣
ss

= F (0)−1

(
α

exp(µ)
+

exp(µ)− 1

exp(µ)

)
+

1− α

exp(µ)
> 1, (26)

where the steady state level of technology has been normalized to one. Because F (0) < 1, it

follows that d log(cA)
dθ

∣∣∣
ss

> 1. The first term in equation (26) represents the effects of higher

capital income from a technological increase, and the second term represents the effects of

higher labor income on an individual’s consumption. Because capital income is shared only

amongst attentive households, it is scaled up by F (0)−1, while labor income is shared amongst

all households and need not be scaled; thus, expression (26) indicates that changes in capital

income can potentially induce large fluctuations in the consumption of attentive households.

With these households pricing assets in the economy, they require a relatively large average

equity premium as compensation.

In the model without inattentive behavior (i.e., A = 0), cA and cI have the interpreta-

tion as active consumption and inactive consumption and cI = (1 − α) exp(θ − µ). In this

case, the derivative of attentive consumption with respect to technology shocks is smaller since

d log(cA)
dθ

∣∣∣
ss

= 1. This smaller effect reflects that an increase in technology has a relatively large

effect on inactive consumption, which rises one-for-one with the technological increase. Hence,

even with F (0) < 1, the increase in technology is equally absorbed by both types of households.

As a result, active consumption is less sensitive to changes in technology than in the model with

inattentive behavior. Accordingly, inattentive behavior plays a crucial role in generating greater

volatility of the consumption of attentive households to technology shocks, as it shifts aggregate

risk away from inattentive households onto attentive households.

The fifth column of Table 1 displays the results using the benchmark calibration of the

inattentive model except that there are no monetary shocks. The results in the table are very

similar to the version of the model with monetary shocks, as the average equity premium,

for instance, is 6.1% in the economy with both technology and monetary shocks and 5.8% in

the economy with just technology shocks. Accordingly, monetary shocks only make a small

contribution to asset pricing fluctuations in the model.
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3.4 Monetary Policy Shocks and the Equity Premium

Besides having reasonable implications for the average risk premium and risk-free rate, the

model generates a noticeable increase in the equity premium following a monetary contraction.

This implication is in line with the evidence of Bernanke and Kuttner (2005), who find that a

broad index of stock prices registers a gain of 1 percent in reaction to a 25 basis point easing

of the federal funds rate. They decompose the response of stock prices into changes in current

and expected future dividends, changes in current and expected future real interest rates, and

changes in expected excess equity returns. They conclude that an important channel in which

increases in stock prices occur is through changes in equity premia.

Figure 2 displays the impulse responses to an unanticipated decline in money growth in the

inattentive model.19 As in the limited participation models of Lucas (1990) and Fuerst (1992),

the model displays a noticeable liquidity effect, with the nominal interest rate increasing 25

basis points in response to the monetary tightening. Moreover, as in Alvarez, Atkeson, and

Kehoe (2002), the effect is persistent. Equity prices fall about 2 percent on impact, with part

of the decline reflecting a higher equity premium. On impact, the equity premium rises about

20 basis points. Such a response is in line with the empirical evidence presented in Bernanke

and Kuttner (2005).

To understand why the model generates a rise in the equity premium, the bottom left panel

of Figure 2 shows the response of the consumption of attentive households. The monetary

contraction has no effect on output but has an important redistributive effect. It raises the

consumption of inattentive households, whose real money balances available for consumption

increase, and lowers the consumption of attentive households. As shown in the bottom right

panel, this redistribution induces a fall in the fraction of attentive households. Accordingly,

there is a reduction in the degree of risk-sharing amongst attentive households, which helps

drive up the equity premium.20

19 Following Hamilton (1994), we define the impulse response of variable, y(st), at date t to a monetary
innovation that occurs at date 1 as: E[log (y(st)) | ϵµ1, µ0, z0] − E[log (y(st)) | µ0, z0],∀t ≥ 1, where E denotes
the conditional expectations operator. See section D of the Appendix where we explain the computation of the
impulse response functions.

20 This intuition is perhaps easiest to understand for a large positive monetary shock which induces all
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The model’s ability to generate a liquidity effect and an increase in the equity premium after

a monetary contraction is notable, especially when contrasted with New Keynesian models.

These models as emphasized by Edge (2007) have difficulty producing a liquidity effect unless

one incorporates additional real rigidities such as habit persistence in consumption and time

to plan and build for investment projects. In addition, there is a limited role for monetary

policy to influence conditional variances of variables in New Keynesian models, and, as a result,

it difficult for these models to account for the evidence suggesting that the equity premium

declines in response to a monetary injection.

3.5 Alternative Monetary Policy Rules and the Equity Premium

Given that the model is capable of accounting for some prominent empirical findings regarding

interest rates and the equity premium, it is natural to use it as a laboratory for evaluating

alternative policy rules. We begin by evaluating how changes in the systematic or anticipated

component of the monetary policy rule affects the average equity premium and the risk free rate.

In particular, we examine how changes in the average money growth rate, µ, the persistence of

the money growth, ρµ, and the response of money to output, dθ affect these variables.

Figure 1 shows how changes in these parameters affect the average equity premium and

risk-free rate. The figure also displays the sample averages for the risk-free rate and the equity

premium (see the black dot labeled “U.S. Data”) and the 5% confidence ellipse based on the

estimates from Guvenen (2009). The points along the red line with diamonds represent different

combinations of the mean equity premium and risk-free rate for money growth rates ranging

from 0 to 10 percent on an annualized basis. For all the average money growth rates in this

range, the model yields a mean equity premium and risk-free rate within the 95% confidence

region. Moreover, changes in average inflation rate have relatively little effect on the average

equity premium and real risk-free rate.

As indicated in our discussion of the non-stochastic steady state, a higher average inflation

households to become attentive. For such a state of the world, the economy behaves similar to a world with a
representative agent in which the equity premium is low. The equity premium is low, because aggregate risk is
now spread over all the households rather than a small set of households.
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rate increases the steady state value of the households’ initial plan. This same consideration

applies to the stochastic economy, as the function, A(s0, γ), shifts up when µ increases. As

discussed above, an upward shift in A(s0, γ) increases the volatility of attentive consumption

and the average equity premium.21

The purple line with triangles in Figure 1 displays the results from varying the persistence

of the money growth process. For values of ρµ between 0.2 and 0.95, the combinations of mean

equity premia and risk-free rates lie within the 95% confidence region. Raising the persistence

of money growth shocks tends to reduce the average equity premium by driving up the incen-

tive for a household to become attentive. This reflects that a higher value of ρµ makes the

monetary shocks both larger and longer-lasting, benefitting attentive households. With more

attentive households, risk in financial markets is spread over more households, attentive con-

sumption growth becomes less volatile, and its covariance with the return on equity diminishes.

Consequently, the average equity premium declines.22

The green line with squares in Figure 1 shows the mean of the equity premium and risk-free

rate for different values of dθ. A countercyclical monetary policy rule (i.e., dθ < 0) tends to

reduce the average risk premium, while a procyclical rule tends to raise it. Holding the fraction

of attentive households fixed, a procyclical (countercyclical) rule tends to increase (decrease)

the volatility of consumption growth of attentive households, as a monetary injection redis-

tributes funds to attentive households during a boom when attentive consumption is already

high. Conversely, in a downturn, a procyclical rule calls for lower money growth, redistributing

cash away from attentive households, which exacerbates the fall in the consumption of attentive

households.

21 This effect is partially offset by a small increase in the number of attentive households resulting from the
higher value of µ.

22 Holding the fraction of attentive households fixed, an offsetting effect is that increasing ρµ raises the
unconditional volatility of money growth, increasing the volatility of attentive consumption growth and hence
the average equity premium.
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3.6 Monetary Policy and the Cyclicality of Risk

Before discussing the normative implications of alternative policy rules, it is helpful to first

examine how simple, systematic rules alter the transmission of technology shocks and affect

the cyclicality of risk. Since our emphasis here is on systematic component of monetary policy,

we only consider rules in which ρµ = ϵµ = 0. The particular rules that we consider include a

fixed money supply rule, (µ = dθ = 0), a procyclical rule in which dθ = 0.1 and µ = 0, and a

countercyclical rule in which dθ = −0.1 and µ = 0. Finally, we consider a price level or zero

inflation targeting rule. From equation (15), this rule implies that µt = θt − θt−1 + η. Thus,

in order to keep inflation constant in response to a highly persistent and positive technology

shock, this rule will raise monetary growth initially but contract it in future periods as the shock

gradually dies out.

Figure 3 displays the response of the economy following a positive technology shock for the

constant money supply rule, the countercyclical rule, and the procyclical rule. In each case,

output is exogenous and rises about 0.1 percent on impact (top left panel of the Figure) after

which it gradually returns to its pre-shocked level. A key result that emerges from Figure 3 is

that the equity premium moves countercyclically under all three rules.

To understand this result, consider first the constant money supply rule (the solid black line).

A positive technology shock raises the consumption of attentive households more than inattentive

households, since an attentive household changes her consumption in response to both the higher

wage and capital income, while the consumption of inattentive household responds only to the

higher wage income. This jump in capital income induces more households to become attentive,

which in turn helps lower risk in equity markets. Under the constant money growth rule, the

equity premium falls about 20 basis points, which helps push up equity prices.

The real interest rate falls on impact, reflecting intertemporal smoothing motives by atten-

tive households. However, the decline in real interest rates is small because of a reduction in

precautionary savings by attentive households. This decline is evident in the fall in conditional

volatility of consumption growth for attentive households (the middle right panel). Finally, infla-

tion falls sharply under the constant money growth rule but quickly falls back to its pre-shocked
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level.

The procyclical rule (the red line with circles) has similar qualitative effects on the equity

premium than the constant money supply rule though the effects are larger. By increasing the

money growth rate when technology is high, monetary policy in effect transfers cash away from

inattentive households to attentive ones. Accordingly, there is a greater incentive to become

attentive, and the fraction of attentive households rises more, helping induce a larger fall in the

equity premium than under the constant money supply rule. There is a larger decline in precau-

tionary savings under the procyclical rule than the constant money supply rule. Accordingly,

the real interest rate rises instead of falls in this case, leading to a smaller increase in equity

prices than under a constant money rule. The countercyclical rule (blue dashed line) works

in reverse relative to the procyclical rule. In this case, the response of the equity premium is

smaller and the real rate falls by more, reflecting a smaller change in precautionary savings.

Figure 4 shows the effects of a more aggressive countercyclical rule (blue dashed line). In this

case, the equity premium rises a bit after the technology shock and is essentially acyclical. This

response reflects that monetary policy now vigorously counteracts the rise in the consumption of

attentive households driven by the technology shock by redistributing funds away from attentive

to inattentive households, which spreads risk over a wider set of households. As shown in the top

right panel of Figure 3, monetary policy achieves this redistribution by generating a persistent

deflation.

Figure 4 also displays the case of a zero inflation targeting rule (red line with circles). The

middle left panel shows that the real interest rate falls sharply under the zero inflation targeting

rule, reflecting a large, temporary increase in money growth that is quickly reversed so that

money growth becomes slightly negative in future periods. With the real interest rate falling

sharply, the (real) price of equity jumps 2 percent and then declines to a level above its pre-

shocked value.

The price of equity rises not only due to the fall in the real interest rate but also due to

a sizeable decline in the equity premium. The equity premium moves countercyclically under

a zero inflation targeting rule, because this rule calls for a large, temporary increase in the
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money growth rate after a positive technology shock. Consequently, there are increases in both

the consumption of attentive households and the fraction of attentive households. In addition,

there is a reduction in precautionary savings by attentive households.

3.7 Welfare Implications of Alternative Monetary Policy Rules

Table 2 compares aggregate welfare under alternative policy rules. We define aggregate welfare

so that each household receives equal weight:

w(s0) =
∞∑
t=1

∫
st

∫
γ

βtU(c(st, γ))g(st)f(γ)dγdst, (27)

where w(s0) is conditional on the initial state of the world as well as the initial asset distribution.

Hence, as discussed in Appendix C, to compare welfare across the different rules, we hold the

initial asset distribution, B̄(γ) ∀γ , fixed across policy rules. To do so, we replace equation (17)

with
c(st, γ)

c(s1, γ)
=

c(st, γ′)

c(s1, γ′)
for z(st, γ) = z(st, γ′) = 1, (28)

and use the given initial asset distribution to determine a household’s initial consumption.23

Table 2 provides a measure of the welfare gain in units of aggregate consumption by defining

wA(s0)− wB(s0)

U ′ (cs) cs
,

where wB(s0) is welfare under fixed money supply rule, wA(s0) denotes aggregate welfare under

an alternative monetary policy rule, cs is the level of aggregate consumption in nonstochastic

steady state, and U ′ (cs) is its associated marginal utility. Accordingly, this index expresses the

gain from adopting a particular policy rule instead of the constant money supply rule in terms

of the permanent increase in steady state consumption.

From Table 2, it is clear that the countercyclical rule with dθ = −0.5 has the highest average

welfare, as it would raise the level of steady state consumption about 0.25 percent relative to a

23 We determine the function B̄(γ) using equation (17) under the constant money growth rule and use this
distribution to compute welfare under the alternative policy rules shown in Table 2. We use the values of the
shocks associated with the nonstochastic steady state for s0. For further details, see Appendix C.

22



fixed money supply rule. In contrast, the procyclical rules perform poorly, resulting in either a

fall in welfare or only a small gain relative to the constant money supply rule.

To understand these results better, Figure 5 displays the effects of alternative policy rules

on the welfare of individual households. A common feature of all the policy rules is that welfare

is decreasing in the fixed cost of households so that households in lower percentiles of the distri-

bution rebalance more frequently and have greater welfare. This reflects that the consumption

level of these households is higher albeit more volatile.

The top panel of Figure 5 shows the welfare distribution for the fixed money supply rule (the

solid black line), the procyclical rule with dθ = 0.1 (the red line with circles), and the counter-

cyclical rule with dθ = −0.1 (the blue dashed line). Relative to the fixed money supply rule,

the countercyclical policy improves the welfare of the majority of households, who are primarily

inattentive, while modestly lowering the welfare of households that are frequently attentive. This

improved welfare of the inattentive types reflects that a countercyclical policy transfers funds

from attentive to inattentive households in productive times, allowing the inattentive ones to

raise their consumption without incurring the fixed cost. Thus, this policy replicates what these

households would do if they did not face a fixed cost of transferring funds from their brokerage

account to their checking account. In contrast, a procyclical policy enacts the reverse redis-

tribution plan: giving more funds to attentive households and less to inattentive ones during

productive periods. While a small fraction of very frequent rebalancers are better off under the

procyclical rule than the countercyclical rule, the majority of households are worse off.

The bottom panel of Figure 5 compares the zero inflation targeting rule (the magenta line

with triangles) to the fixed money supply rule and the countercyclical rule with dθ = −0.5.

As shown in Table 2, a zero inflation targeting rule improves the average welfare relative to a

constant money supply rule but performs worse than the countercyclical rule with dθ = −0.5.

The zero inflation targeting rule raises welfare relative to the constant money growth rule by

sharply increasing the welfare of households that are frequently attentive while only slightly

reducing the welfare of inattentive households. Households that frequently rebalance are better

off, as the zero inflation targeting rule implies a large transfer to attentive households in the

23



initial period of a positive shock. Still, for average welfare, the countercyclical rule with dθ =

−0.5 outperforms the zero inflation targeting rule and results in the highest average welfare of

the rules that we considered.

4 Conclusions

We used a DSGE model that has reasonable implications for the equity premium and generates

endogenous variations in risk to examine the positive and normative implications of alternative

monetary policy rules. We showed that the response of the equity premium to shocks depends

critically on the systematic response of monetary policy. Monetary policies primarily focused on

inflation targeting induce procyclical movements in the equity premium, while very aggressive

countercyclical policies induce acyclical movements. Countercyclical monetary policy can gener-

ate higher average welfare than constant money growth or inflation targeting rules by spreading

consumption risk more broadly over households. A by-product of countercyclical policy is a sus-

tained deflation, suggesting that the Friedman rule may also achieve superior outcomes. Thus,

a natural extension of this paper is to compute optimal monetary policy and determine how well

simple rules, the Friedman rule, or the countercyclical rule we emphasized here approximate it.
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Table 1: Unconditional Moments of Asset Returnsa

U.S. Representative No Financial Benchmark Technology
Statisticb Datac Agent Plans Calibration Shocks Only

E(re − rf ) 6.2 (2.0) 0.2 0.2 6.1 5.8
σ(re − rf ) 19.4 (1.4) 7.8 7.9 33.6 32.2
E(re−rf )
σ(re−rf )

0.32 (0.1) 0.04 0.03 0.18 0.18

E(rf ) 1.9 (5.4) 8.8 8.8 1.7 1.8
σ(rf ) 5.4 (0.6) 1.1 1.0 4.2 3.8
σ(∆c) 3.5 (0.4) 3.2 3.3 3.0 3.0
σ(∆ca)
σ(∆c)

1 0.86 5.6 5.6

E(F (γ)) 100 29 6 6
σ(F (γ)) 0 0.6 0.2 0.2
Avg.Cost of Reb. 0 21 0.2 0.2
(% of GDP )

aResults for the models based on population moments.
bThe symbol E denotes the unconditional mean of a variable and σ(x) denotes the standard deviation of

variable x. Rates of return are expressed in percent on an annualized basis.
cThis column contains estimates (standard errors in parentheses) based on U.S. data for the period

1890-1991 and are taken from Guvenen (2009). The estimates for consumption are based on U.S. data for

the period 1889-2009 and are available online at http://www.econ.yale.edu/ shiller/.
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Table 2: Welfare Implications of Alternative Monetary Policy Rules∗

Rule Parameters Welfare Avg. Fraction
µ dθ Gain of Attentive HHs

Fixed Money Supply 0 0 0.00 6.0

Procyclical 0 0.1 -0.052 6.3
0 0.5 0.020 8.3
0 1 0.032 12.3

Countercyclical 0 -0.1 0.053 5.8
0 -0.5 0.258 5.4
0 -1 -0.097 5.7

Zero Inflation Target – – 0.143 6.5

∗With the exception of the zero inflation target, the monetary policy rule is given by:

µt = µ+ dθ log(Yt),

where µt is the economy’s money growth rate, Yt is aggregate output, and µ denotes the average

money growth rate. Under the zero inflation target, µt is chosen so that inflation is constant and

equal to zero.
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Figure 1: Monetary Policy and the Average Equity Premium
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Note: The monetary policy rule is given by:

µt = (1− ρµ)µ+ ρµµt−1 + dθ log(Yt) + ϵµt,

where µt is the economy’s money growth rate, Yt is aggregate output, µ denotes the average money growth rate,

and ϵµt ∼ N(0, σ2
µ).
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Figure 2: Impulse Response to a Contractionary Monetary Shock
(Deviation from Date 0 Expectation of a Variable)
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Note: These impulse responses are from the benchmark calibration of the model with monetary policy specified
as:

µt = (1− ρµ)µ+ ρµµt−1 + ϵµt,

where µt is the economy’s money growth rate, µ denotes the average money growth rate, ϵµt ∼ N(0, σ2
µ), and

ρµ = 0.95.
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Figure 3: Impulse Response to a Technology Shock for Alternative Policy Rules
(Deviation from Date 0 Expectation of a Variable)
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Note: The monetary policy rule is given by:

µt = µ+ dθ log(Yt),

where µt is the economy’s money growth rate, Yt is aggregate output, and µ denotes the average money growth

rate.
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Figure 4: Impulse Response to a Technology Shock for a Zero Inflation Target
(Deviation from Date 0 Expectation of a Variable)
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Note: With the exception of the zero inflation target, the monetary policy rule is given by:

µt = µ+ dθ log(Yt),

where µt is the economy’s money growth rate, Yt is aggregate output, and µ denotes the average money growth

rate. Under the zero inflation target, µt is chosen so that inflation is constant and equal to zero.
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Figure 5: Welfare Distribution for Alternative Monetary Policy Rules
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Note: With the exception of the zero inflation target, the monetary policy rule is given by:

µt = µ+ dθ log(Yt),

where µt is the economy’s money growth rate, Yt is aggregate output, and µ denotes the average money growth

rate. Under the zero inflation target, µt is chosen so that inflation is constant and equal to zero.
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Appendix
This appendix is divided into four sections. In section A, we provide derivations for the

equilibrium conditions of the model. Section B describes the solution algorithm. Section C
describes the computation of welfare, and finally in section D we explain the computation of the
impulse response functions.

A Theoretical Derivations

In this section of the appendix, we derive the model’s equilibrium conditions. We also provide
conditions under which a household’s cash constraints in her checking and brokerage accounts
hold with equality.

To show the sufficient condition for a household’s cash constraint in her brokerage account
to hold with equality, we define N(st, γ) as a household’s excess cash holdings in her brokerage
account. Writing these cash holdings explicitly as part of a household’s flow of funds in her
brokerage accounts, a household’s date 0 and date t constraints can be rewritten as:

B(γ) =

∫
s1

q(s0, s1)B(s0, s1, γ)ds1 +N(s0, γ) + pK(s0)S(s0, γ), (A.1)

and

B(st, γ) + P (st)(pK(s
t) +D(st))S(st−1, γ) +N(st−1, γ) =

∫
st+1

q(st, st+1)B(st, st+1, γ)dst+1+

P (st)pK(s
t)S(st, γ) + exp(ηt)P (st)A(s0, γ) + P (st)[x(st, γ) + exp(ηt)γ]z(st, γ) +N(st, γ).

(A.2)

Let a(st, γ) denote a household’s excess cash holdings (in real terms) in her checking account
and rewrite a household’s cash constraint in her checking account as:

c(st, γ) + a(st, γ) =
M(st−1, γ)

P (st)
+ x(st, γ)z(st, γ) + exp(ηt)A(s0, γ). (A.3)

A household’s end of the period cash is given by:

M(st, γ)

P (st)
= w(st, γ) + a(st, γ). (A.4)

We first characterize the household’s optimal allocation of c(st, γ) and x(st, γ), taking as
given A(s0, γ), and the state-contingent sequences for M(st−1, γ), a(st, γ), N(st, γ), and z(st, γ).
We then characterize the optimal choice of z(st, γ), A(s0, γ), M(st, γ), a(st, γ) and N(st, γ) given
the optimal rules for c(st, γ) and x(st, γ).
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Using the complete set of state-contingent securities, the asset market constraints can be
written as a single date 0 constraint:

B(γ) =
∞∑
t=1

∫
st
Q(st){P (st)

[
x(st, γ) + exp(ηt)γ

]
z(st, γ)

N(st, γ)−N(st−1, γ) + P (st)[pK(s
t)(S(st, γ)− S(st−1, γ))−D(st)S(st−1, γ)]+

exp(ηt)P (st)A(s0, γ)}dst − pK(s0)S(s0, γ)−N(s0, γ). (A.5)

where Q(st) =
∏t

j=1 q(s
j). To obtain the previous expression we have imposed the transversality

condition:

lim
t→∞

∫
st
Q(st)B(st, γ) = 0 (A.6)

With the date 0 asset market constraint, the household problem can be expressed as the
following Lagrangian:

Max
∞∑
t=1

∫
st
βtU [c(st, γ)]g(st)dst + (A.7)

∞∑
t=1

∫
st
ν(st, γ)

{
M(st−1, γ)

P (st)
+ x(st, γ)z(st, γ) + exp(ηt)A(s0, γ)− c(st, γ) + a(st, γ)

}
dst

+
∞∑
t=1

∫
st
k(st, γ)

{
w(st, γ) + a(st, γ)− M(st, γ)

P (st)

}
dst +

v(γ)[B(γ)− pK(s0)S(s0, γ)−N(s0, γ) +
∞∑
t=1

∫
st
Q(st){P (st)[x(st, γ)+exp(ηt)γ]z(st, γ) +

P (st)[pK(s
t)(S(st, γ)− S(st−1, γ))−D(st)S(st−1, γ) + exp(ηt)A(s0, γ)]

+N(st, γ)−N(st−1, γ)}dst]

where ν(st, γ), k(st, γ) and v(γ) represent the Lagrange multipliers of the constraints. We use
this Lagrangian to characterize the optimal choice of x(st, γ), c(st, γ) taking as given A(s0, γ)
and the sequences, {z(st, γ)),M(st−1, γ), a(st−1, γ), N(st−1, γ), P (st), w(st)}∞t=0. In doing so, we
impose expression (A.6) and

lim
t→∞

∫
st
Q(st)S(st, γ) = 0.

These two terminal conditions and N(st, γ) > 0, a(st, γ) > 0 ∀st rule out Ponzi schemes.
We also require that c(st, γ) > 0 ∀st. Given the transversality conditions and non-negativity
constraints on money, expression (A.5) limits the size of the expected discounted value of future
transfers, i.e. x(st, γ) and A(s0, γ).

The first order conditions for c(st, γ) and x(st, γ) are:

βtU ′[c(st, γ)]g(st) = ν(st, γ),

ν(st, γ)z(st, γ)− v(γ)P (st)Q(st)z(st, γ) = 0.
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Suppose that z(st, γ) = 1 for some state of the world st, then we can combine these two conditions
to write:

ν(st, γ) = βtU ′[c(st, γ)]g(st) = v(γ)P (st)Q(st). (A.8)

Following Alvarez, Atkeson, and Kehoe (2002), we assume an initial wealth distribution, B(γ),
such that v(γ) = v, ∀γ. Imposing v(γ) = v in equation (A.8), it follows that cA(s

t, γ) = cA(s
t).

The optimal transfer for a household when it is active is given by:

x(st, γ) = cA(s
t)− cI(s

t, γ), (A.9)

where cI(s
t, γ) is the optimal consumption of household γ when she chooses to be inactive (i.e.,

z(st, γ) = 0). This level of consumption is given by:

cI(s
t, γ) =

M(st−1, γ)

P (st)
+ exp(ηt)A(s0, γ)− a(st, γ) (A.10)

Given the optimal choices of cA(s
t), cI(s

t, γ), and x(st, γ) , we now characterize the optimal
rule for z(st, γ) and the optimal choices for A(s0, γ), M(st, γ), a(st, γ), and N(st, γ). Using the
optimal rules for cA(s

t), cI(s
t, γ), and x(st, γ) , a household’s problem can be rewritten:

Max
∞∑
t=1

∫
st
βtU [cA(s

t)]z(st, γ)g(st)dst +

∞∑
t=1

∫
st
βtU [

M(st−1, γ)

P (st)
+ exp(ηt)A(s0, γ)− a(st, γ)](1− z(st, γ))g(st)dst +

∞∑
t=1

∫
st
Φ(st, γ)

{
w(st, γ) + a(st, γ)− M(st, γ)

P (st)

}
dst +

vh(γ){B(γ)-
∞∑
t=1

∫
st
Q(st){P (st)[cA(s

t)-
M(st−1, γ)

P (st)
+ exp(ηt)A(s0, γ)-a(s

t, γ)+exp(ηt)γ]z(st, γ)+

exp(ηt)P (st)A(s0, γ)+P (st)[pK(s
t)(S(st, γ)-S(st−1, γ))-D(st)S(st−1, γ)]+N(st, γ)-N(st−1, γ)

}
dst

−pK(s0)S(s0, γ)−N(s0, γ)} .

We use a variational argument to characterize the optimal choice of z(st, γ). The increment
to the Lagrangian of setting z(st, γ) = 1 in the state of the world st for household γ is:

βtU [cA(s
t)]g(st)− vh(γ)Q(st)P (st)[cA(s

t)− cI(s
t, γ) + exp(ηt)γ]dst (A.11)

which corresponds to the difference between the utility gain minus the cost of transferring funds.
The increment to the Lagrangian of setting z(st, γ) = 0 is:

βtU [cI(s
t, γ)]g(st)dst, (A.12)

which represents the direct utility gain from remaining inactive. The first order condition with
respect to cA(s

t, γ) is:
βtU ′[cA(s

t)]g(st) = vh(γ)P (st)Q(st), (A.13)
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from which it follows that the Lagrange multiplier vh(γ) = vh, ∀γ. Substituting this expression
into equation (A.11) and subtracting (A.12) from it yields expression (19).

To derive equation (18) of the main text, we need to take the first order conditions with
respect to A(s0, γ). This yields:

∞∑
t=1

∫
st

[
βtU ′[cI(s

t, γ)](1− z(st, γ))g(st)− vhP (st)Q(st)(1− z(st, γ))
]
exp(ηt)dst = 0 (A.14)

Substituting equation (A.13) into equation (A.14) yields expression (18) in the text.
To derive sufficient conditions that imply that the two cash constraints hold with equality,

note that the first order conditions with respect to N(st, γ), m(st+1, γ), a(st, γ) and are given
by: ∫

st+1

Q(st+1)dst+1 −Q(st)dst ≤ 0 (A.15)∫
st+1

βt+1U
′ [cI(s

t+1, γ)]

P (st+1)
(1− z(st+1, γ))g(st+1)dst+1−

Φ(st, γ)

P (st)
dst + vh

∫
st+1

Q(st+1)z(st+1, γ)dst+1 = 0 (A.16)

−βtU ′ [cI(st, γ)] (1− z(st, γ))g(st) + Φ(st, γ) + vhQ(st)P (st)z(st, γ) ≤ 0 (A.17)

Using the definition of Q(st), equation (A.15) can be used to define the nominal interest as
follows:

(1 +R(st))−1 ≡
∫
st+1

q(st+1)dst+1 ≤ 1. (A.18)

When the nominal interest rate is strictly positive, then N(st, γ) = 0 and equation (8) holds as
an equality.

To derive the sufficient condition for a household’s checking account to hold with equality, we
follow a similar strategy. In particular, using equation (A.13) and substituting equation (A.17)
into equation (A.16) yields:

β
∫
st+1

[U ′[cA(s
t+1)]z(st+1, γ) + U ′[cI(s

t+1, γ)] (1− z(st+1, γ))] g(st+1|st)
π(st+1)

dst+1

U ′[cA(st)]z(st, γ) + U ′[cI(st, γ)] (1− z(st, γ))
≤ 1.

If the expected discounted marginal utility of future consumption is strictly less than a house-
hold’s current marginal utility of consumption, then a(st, γ) = 0, and as a result equation (8)
in the main text holds as an equality.

A.1 The Attentiveness of Households with Zero Fixed Costs

To show that a household with zero fixed cost is always attentive, it is convenient to use equation
(19)and define:

h(st, γ) = U
(
cA(s

t)
)
− U

(
cI(s

t, γ)
)
− UA

c

(
st
) [

cA(s
t)− cI(s

t, γ) + exp(ηt)γ
]
, (A.19)

37



so that h(st, γ) > 0 implies that the household with fixed cost γ is attentive. For households
with γ = 0 to be attentive, we need to show that:

h(st, 0) = U
(
cA(s

t)
)
− U

(
cI(s

t, 0)
)
− UA

c

(
st
) [

cA(s
t)− cI(s

t, 0)
]
> 0, ∀ st.

Substituting the expression for the preferences into the previous expression for h(st, 0) yields:

h(0) =
c1−σ
A

1− σ
− cI(0)

1−σ

1− σ
− cA − cI(0)

c−σ
A

,

where, for simplicity and without loss of generality, we have suppressed the dependence on the
state st and set η = 0.

Let h̃(0) = h(0)

c−σ
A

and rewrite the previous expression as:

h̃(st, 0) = F1 − F2

where F1 =
1

σ−1

[(
cA
cI

)σ−1

− 1

]
and F2 =

[
1−

(
cA
cI

)−1
]
.

For any cA > 0 and cI > 0, then h̃(0) ≥ 0. To see this, we need to assume that σ > 1 and
consider two cases. First, suppose cA > cI then it is possible to show that F1 > F2. In the case,
a household with γ = 0 will choose to transfer funds from her brokerage account to her checking
account. Now suppose cA < cI , then the household wants to put extra funds into her brokerage
account, since the loss in utility from doing so (F1) is more than offsets the gain of having extra
funds in that account (F2).

A.2 The Responsiveness of Attentive Consumption

The purpose of this section is to derive expression (26) of the main text, i.e. the response of
consumption of attentive households to technology shocks. To do so, we focus on a two agent
economy in which the number of attentive households is fixed, and we abstract from growth (i.e.
η = 0). Under these assumptions, we can use expression (21), the aggregate resource constraint,
to write the consumption of attentive consumers as follows:

cA(θ
t) =

1

F (0)

[
exp(θt)− (1− F (0))cI(θ

t)
]

Differentiating the previous expression with respect to θt yields:

dcA(θ
t)

dθt
=

1

F (0)
[exp(θt)− (1− F (0))

dcI(θ
t)

dst
]. (A.20)

To obtain the expression for dcI(θ
t)

dθt
we use expression (16):

cI(θ
t) = (1− α)

[
exp(θt)− µt

]
+ A,
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which can be differentiated to obtain:

dcI(θ
t)

dθt
= (1− α)

[
exp(θt)− µt

]
= cI(θ

t)− A.

Substituting this expression into (A.20) yields:

dcA(θ
t)

dθt
=

1

F (0)
[exp(θt)− (1− F (0))(cI(θ

t)− A)] =

1

F (0)
[exp(θt)− (1− f(0))cI(θ

t)] +
1− F (0)

F (0)
A

dcA(θ
t)

dθt
= cA(θ

t) +
1− F (0)

F (0)
A. (A.21)

Notice that, dividing by cA(θ
t) both sides of the previous expression yields:

dcA(θ
t)

cA(θt)dθt
=

d log cA(θ
t)

dθt
= 1 +

1− F (0)

F (0)

A

cA(θt)
(A.22)

As discussed in the text, in the model with A = 0, the previous elasticity is equal to one.
The presence of A > 0, makes this elasticity greater than one (i.e., greater than in the model
without the financial plan).

We know proceed to evaluate the elasticity at the steady state. To do so, we notice that in
the non-stochastic steady state, cI = cA = (1−α)

exp(µ)
+ A = 1, which implies that A = 1− (1−α)

exp(µ)
=

α
exp(µ)

+ exp(µ)−1
exp(µ)

. To obtain the expression of the elasticity used in the main text we need to

rewrite expression (A.22) as follows:

d log cA(θ
t)

dθt
=

1

F (0)

A

cA(θt)
+ (1− A

cA(θt)
),

which, using the previous expressions, can be evaluated at the steady state yielding:

d log cA(θ
t)

dθt
=

1

F (0)

(
α

exp(µ)
+

exp(µ)− 1

exp(µ)

)
+

1− α

exp(µ)
,

that corresponds to expression (26) of the main text.

B Solving the Model

This appendix describes the solution algorithm used to compute the model’s equilibrium.
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B.1 Characterizing the Equilibrium with Policy Functions

Before describing the solution algorithm, we characterize a solution to our model using the
time-invariant function, A(γ), ∀γ ∈ (0,∞). The function A(γ) denotes the level of non-state
contingent transfers for household γ, A(γ, s0), evaluated at the initial level of technology and
money growth, which we set equal to their non-stochastic steady state values. (We do not solve
for A(0) given that, as shown earlier, households with γ = 0 always chooses to be attentive.)

The function, A(γ), satisfies the Euler equation:

V(s, γ;A(γ)) = 0 for s = s̄, (B.1)

where s̄ = (0, µss) and µss refers to the rate of money growth in non-stochastic steady state.
The value function, V in accordance with expression (22) satisfies:

V(s, γ;A(γ)) = β̃

∫
s′
{U ′[cA(s

′)]− U ′[cI(s
′;A(γ))]} (1− z(s′, γ))g(s′|s)

+β̃

∫
s′
V(s′, γ;A(γ))g(s′|s). (B.2)

where β̃ = β
exp(ση)

, U ′(c) = c−σ and g(s′|s) is a bivariate normal distribution for s′ conditional on

state s in which the technology shocks are independent from monetary shocks. (The discount
factor is scaled by the economy’s growth rate, because below we describe the solution to the
economy in which the relevant variables have been scaled by the economy’s growth rate.)

Given the function, A(γ), the consumption of inattentive households satisfies:

cI(s;A(γ)) = (1− α) exp(θ − µ) + A(γ). (B.3)

The consumption of attentive households and the marginal household type, γ = γ(s), are
determined simultaneously by the resource constraint and expression (19). Specifically, cA and
γ satisfy:

cA(s) = (F (γ̄))−1

(
exp(θ)−

∫ ∞

γ̄

cI(s;A(γ))f(γ)dγ −
∫ γ̄

0

γf(γ)dγ

)
, (B.4)

and
U [cA(s)]− U [cI(s;A(γ̄))]− U ′[cA(s)] {cA(s)− cI(s;A(γ̄)) + γ̄(s)} = 0, (B.5)

where γ ≤ γ̄(s) implies z(s, γ) = 1 and γ > γ̄(s) implies z(s, γ) = 0.
From equation (B.2), it follows that if z(s, γ) = 0 ∀s, then the value-function becomes

independent of γ except for its dependence on A(γ). Accordingly, it is convenient to define γM
and A(γM) such that A(γ) = A(γM) for all γ ≥ γM where A(γM) satisfies:

V(s;A(γM)) = β̃

∫
s′
{U ′[cA(s

′)]− U ′[cI(s
′;A(γ))]} g(s′|s)

+β̃

∫
s′
V(s′;A(γM))g(s′|s). (B.6)
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In other words, γM is defined so that households with a larger fixed cost are always inattentive,
and all such households choose the same level of the non-state contingent plan regardless of
type. Because of this property, the function A(γ) can be written as:

A(γ) = AL(γ), for γ ∈ (0, γM ] (B.7)

A(γM), for γ ≥ γM

B.2 Solution Algorithm

To find the solution of the model we use a piecewise linear interpolation to approximate AL(γ):

AL(γ) ≈ ÂL(γ) ≡ A(γi) +
γ − γi

γi+1 − γi
[A(γi+1)− A(γi)] , for γ ∈ [γi, γi+1]

where γi ∈ {γ1, γ2, ..., γM}. To determine ÂL(γ) we need to find the values A(γi) and γM such
that expression (B.1) holds for γi ∈ {γ1, γ2, ..., γM}, and γM = argmin{γ : z(s, γ) = 0,∀s}. To
do so we proceed as follows.

1. For a given initial guess of A(γi), i = 1, ..,M , and γM , we obtain Â(γ), where Â(γ) =

ÂL(γ) for γ ∈ (0, γM ] and Â(γ) = A(γM) for γ ≥ γM . Using this, we can determine

{cI(s; Â(γ)), cA(s), γ(s)} from expressions (B.3), (B.4), and (B.5). Given γ(s) we obtain
z(s, γ), ∀γ.

2. Using the decision rules in step 1, we compute V (s, γi;A(γi)) recognizing that expression
(B.2) is a linear Fredholm equation of the second kind. Following Judd (1999) we use
quadrature methods to solve this equation by writing:

β̃

∫
s′
{U ′[cA(s

′)]− U ′[cI(s
′;A(γi))]} (1− z(s′, γi))g(s

′|s) .
= f(s)

f(s) = β̃
Ns∑
j=1

ωj {U ′[cA(sj)]− U ′[cI(sj;A(γi))]} (1− z(sj, γi))g(sj|s)

∫
s′
V (s′, γi;A(γi))g(s

′|s) .
=

Ns∑
j=1

ωjV (sj, γi;A(γi))g(sj|s)

where sj ∈ [−l, l], for j = 1, ..., Ns, with l = {κσθ, κσµ} and κ > 0. The elements which
make up sj are equally spaced and the weights, ωj, are chosen according to Simpson’s rule.
With this quadrature scheme, we can write expression (B.2) as the linear system:

V (sk, γi;A(γi)) = f(sk) + β̃
Ns∑
j=1

ωjV (sj, γi;A(γi))g(sj|s), for k = 1, ..., Ns
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3. From this linear system of equations we can determine V (sk, γi;A(γi)). Notice that we
construct the grid so that the s is one of the points, yielding V (s, γi;A(γi)). We repeat this
procedure for each of the household types, i = 1, ..,M , that we use to characterize A(γ).
For the given initial guess of A(γi), i = 1, ..,M , and γM ; we also compute argmin{γ :
z(sk, γ) = 0, ∀sk}. In this way, we can update A(γi), i = 1, ..,M , and γM . To do
so, we use a non-linear equation solver to find A(γi) for i = 1, ..,M and γM such that
V (s, γi;A(γi)) = 0, for i = 1, ..,M , and γM = argmin{γ : z(sk, γ) = 0, ∀sk}.

4. To compute the (detrended) price of equity, pk(s), we use the solution for cA(s) and

pk(s) =
β

exp((σ − 1)η)

∫
s′

U ′[cA(s
′)]

U ′[cA(s)]
[α exp(θ′) + pk(s

′)]g(s′|s)ds′

which combines expressions (23) and (24) of the main text. This expression is also a linear
Fredholm equation of the second kind. Thus, we can follow the strategy used in step
2 above to define a linear system of equations from which we can determine pk(sj) for
j = 1, ..., Ns. In simulating the model we approximate pk(s) using the Nystrom extension,
where we form p̂k(s):

p̂k(s) =
β

exp((σ − 1)η)

Ns∑
j=1

ωj
U ′[cA(sj)]

U ′[cA(s)]
[α exp(θj) + pk(sj)].

C Computing Welfare

C.1 Welfare under Constant Money Growth

To compute welfare under a fix money supply rule, we follow the procedure described above to
solve the model. This produces the decision rules forA(γ) and consumption: {cI(θ;A(γ)), cA(θ)}.
Note that the assumption about money supply implies that the only exogenous state variable is
technology and hence s = θ.

Let wB(θ) denote welfare under the fixed money supply rule, which can be determined from:

wB(θ) = β̃

∫
θ′

∫
γ

U(c(θ′, γ))g(θ′|θ)f(γ)dγdθ′ + β̃

∫
θ′
wB(θ′)g(θ′|θ)dθ′,

where g(θ) refers to the univariate normal distribution for technology shocks. We compute
wB(θ) recognizing that this expression is also a linear Fredholm equation of the second kind.
Accordingly, we can follow the strategy used in step 2 of Appendix B.2 to define a linear system
of equations from which we can determine wB(θk) for k = 1, ..., Nθ. We construct the grid so
that the θ = 0 is one of the points, and the numbers in Table 2 use wB(0).
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C.2 Initial Asset Distribution under Constant Money Growth

Average household welfare implicitly depends on the initial asset position of the households.
To compare welfare across alternative monetary policy rules, we keep the initial distribution of
assets fixed at the distribution associated with the constant money growth rule. To determine
this initial asset position, B̄(γ), we set N(θt) = 0 and focus on a symmetric equilibrium where
S(θt, γ) = 1. Accordingly, expression (A.5) implies:

vh
(
B(γ)− pK(θ0)

)
=

∞∑
t=1

β̃t

∫
θt
U ′[cA(θ

t)]
{
cB(θt, γ)− αY (θt)

}
g(θt)dθt, (C.1)

cB(θt, γ) =

[
cA(θ

t)− (1-α) exp(θt)

µ
+ γ

]
z(θt, γ)+A(θ0, γ)(1-z(θ

t, γ)),

where cB(θt, γ) represents the consumption of household γ under the money growth rule and

β̃t = βt

exp(σηt)
. In the above, we have used that in equilibrium, D(θt) = αY (θt). To determine

B(γ) and the Lagrange multiplier vh, we also use:∫ ∞

0

B(γ)f(γ)dγ = B, (C.2)

where B satisfies the government’s intertemporal budget constraint: B =
∑∞

t=1

∫
θt
Q(θt)[1 −

exp(−µ)] exp(µt)M0. Note that given M0 > 0 this expression uniquely pins down the initial
level of government debt, B. Let

ΛB(θ, γ) = U ′[cA(θ)]
{
cBA(θ, γ)− αY (θ)

}
,

then we can write expression (C.1) as follows:

vh
(
B(γ)− pK(θ0)

)
= V B(θ, γ), where V B(θ, γ) = β̃

∫
θ′

[
ΛB(θ′, γ) + V B(θ′, γ)

]
g(θ′|θ)dθ′.

(C.3)
Given a value of B consistent with the intertemporal budget constraint, expressions (C.2)

and (C.3) are a system of equations determining vh and B(γ) such that:

B(γ) = BL(γ), for γ ∈ (0, γM ]

B(γM), for γ ≥ γM .

To determine B(γ), we use the decision rules computed in Appendix B. We approximate BL(γ)
using piecewise linear interpolation:

BL(γ) ≈ B(γi) +
γ − γi

γi+1 − γi

[
B(γi+1)−B(γi)

]
, for γ ∈ [γi, γi+1],

where γi ∈ {γ1, γ2, ..., γM}. Also, B(γi) is determined using a similar procedure as the one
described in steps 2 and 3 of Appendix B.2 for A(γi).
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C.3 Solving the Model Given an Initial Distribution of Assets

In this section we describe how to solve the model for a given distribution of assets, B(γ). By
doing so, we are able to make welfare comparisons across alternative monetary policy rules,
holding fixed this initial distribution.

C.3.1 Equilibrium Characterization

An important element of the theoretical derivation of the equilibrium conditions in the bench-
mark model (as described in Appendix A) is that the initial distribution of assets B(γ) is chosen
so that the Lagrange multiplier v(γ) = v. This condition implies that the consumption among
attentive consumers was equalized. However, consumption need not be equalized across atten-
tive households once we fix the initial distribution of assets, B(γ) to the one that corresponds
constant money growth rule. In this section, we re-characterize the equilibrium conditions of
the model in order to compute welfare for alternative policy rules holding fixed B(γ) at the dis-
tribution computed in Appendix C.2. Because the rules we consider imply that money growth
is a function of the technology shock, the exogenous state can again by characterized using θt.

To characterize a household’s optimal allocation of c(θt, γ), it is convenient to define cA(θ
t, γ)

when a household chooses z(θt, γ) = 1 and cI(θ
t, γ) when z(θt, γ) = 0. Using the Lagrangian

defined in expression (A.7) and taking the first order conditions for c and x, it follows that:

P (θt)Q(θt) =
βtU ′[cA(θ

t, γ)]g(θt)

v(γ)
, (C.4)

when z(θt, γ) = 1. This expression holds for the household with γ = 0. As shown earlier, this
household will always be attentive and

P (θt)Q(θt) =
βtU ′[cA(θ

t, 0)]g(θt)

v(0)
, (C.5)

holds for all θt.
In periods in which a household with γ > 0 chooses to be attentive, her consumption will

be proportional to the other attentive households. To see this, combine expressions (C.4) and
(C.5):

U ′[cA(θ
t, γ)]

v(γ)
=

U ′[cA(θ
t, 0)]

v(0)
, (C.6)

∀γ such that z(θt, γ) = 1. Using the households with γ = 0 as a reference, expression (C.6)
allows us to characterize the function cA(θ

t, γ) given the function v(γ). In particular, when a
household chooses to be attentive its consumption relative to the household with γ = 0 is given
by the ratio of the Lagrange multipliers v(γ)

v(0)
.

Assuming a household does not carry excess cash in its checking account, it follows from
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expressions (A.4) and (A.10) that:

cI(θ
t, γ) =

w(θt−1)

π(θt)
+ exp(ηt)A(θ0, γ) (C.7)

x(θt, γ) = cA(θ
t, γ)− w(st−1)

π(θt)
+ exp(ηt)A(θ0, γ) (C.8)

From the Lagrangian (A.7), it follows that the optimal choices for A(θ0, γ) satisfies:

∞∑
t=1

∫
θt
βtexp(ηt)

[
U ′(cA(θ

t, 0))− U ′(cI(θ
t, γ))

]
(1− z(θt, γ))g(θt)dθt = 0, (C.9)

Using a similar variational argument as described earlier, the optimal choice of z(θt, γ) is deter-
mined from:

U
(
cA(θ

t, γ̄(θt))
)
− U

(
cI(θ

t, γ̄(θt))
)
=

U ′ (cA(θt, γ̄(θt))) [cA(θt, γ̄(θt))− cI(θ
t, γ̄(θt)) + exp(ηt)γ̄(θt)

]
, (C.10)

where z(θt, γ) = 1 for γ ≤ γ̄(θt) and z(θt, γ) = 0 for γ > γ̄(θt).
Given B(γ), the intertemporal asset market constraint, expression (A.5), can be used to

determine v(γ). To do so, we focus on a symmetric equilibrium in which S(θt, γ) = 1 ∀γ and
assume that N(θt) = 0 ∀ t ≥ 1. Accordingly, we can write expression (A.5) as:

v(γ)
(
B(γ)− pK(θ0)

)
=V A(θt, γ). (C.11)

where the value-function, V A(θt, γ), is given by:

V A(θt, γ) =
∞∑
t=1

βt

∫
θt
U ′[cA(θ

t, γ)]
{
cAA(θ

t, γ)− αY (θt)
}
g(θt)dθt, (C.12)

cA(θt, γ) =

[
cA(θ

t)− (1− α) exp(θt + ηt)

µ(θt)
+ exp(ηt)γ

]
z(θt, γ) +

exp(ηt)A(θ0, γ)(1− z(θt, γ)),

where cA(θt, γ) represents the consumption of household γ under one of the alternative monetary
policy rules: the procyclical, the countercyclical, or the zero inflation policy rule.

Given the functions v(γ) and A(θ0, γ), expressions (C.6), (C.7), (C.10), and the resource
constraint:

Y (θt) =

∫ γ̄(θt)

0

cA(θ
t, γ)f(γ)dγ +

∫ ∞

γ̄(θt)

cI(θ
t, γ)f(γ)dγ + exp(ηt)

∫ γ̄(θt)

0

γf(γ)dγ, (C.13)

characterize the optimal choices of cA(θ
t, 0), cA(θ

t, γ) for 0 < γ ≤ γ(θt), cI(θ
t, γ) for γ > γ(θt)

and γ̄(θt). Equations (C.9) and (C.11) and can be used to determine the functions A(θ0, γ) and
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v(γ), taking B(γ) as given. As before, we define γM so that households with a larger fixed cost
are always inattentive. From these two expressions, it follows that households with γ ≥ γM
choose the same level of the non-state contingent plan and and the same value of the Lagrange
multiplier (v(γM)). Because of this property, the function v(γ) can be written as:

v(γ) = vL(γ), for γ ∈ (0, γM ] (C.14)

v(γM), for γ ≥ γM

C.3.2 Solution Procedure

To solve the model with a fix distribution of initial assets we modify the solution procedure
discussed in Appendix B.2. In particular, VA(θ, γ) and the value function associated with (C.9)
can be determined by recognizing that they can be expressed as linear Fredholm equations and
applying piecewise linear interpolation to approximate AL(γ) and vL(γ). With these functions
available, wA(θ) is computed for each of the alternative monetary policy rules—the procyclical,
countercyclical, and zero inflation policy rules—in an analogous manner to welfare under the
constant money supply rule.

D Impulse Responses

Following Hamilton (1994), an impulse response of variable, y(st), at date t to a monetary
innovation that occurs at date 1 is defined as:

E
[
log

(
y(st)

)
| µr

1, µ0, θ0
]
− E

[
log

(
y(st)

)
| µ0, θ0

]
,∀t ≥ 1, (D.1)

where µr
1 is a random variable governing the size of the innovation at date 1 and µ0 and θ0 are

the initial levels of money growth and technology. (The impulse response to a technology shock
is defined analogously, and we set µ0 and θ0 equal to their steady state values in Figures 2, 3,
and 4). Accordingly, the impulse responses displayed in Figure 2 show the effects of a revision
in expectations about a monetary innovation that occurs at date 1. For log-linear models,
equation (D.1) simplifies to the usual analytical representation in which (up to a scaling factor)
the model’s linear coefficients characterize the impulse response function. Since in our context
evaluating the expectations in equation (D.1) involves multidimensional integrals, we use Monte
Carlo integration to compute these expectations.
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